हिंदी

How many committee of five persons with a chairperson can be selected from 12 persons. - Mathematics

Advertisements
Advertisements

प्रश्न

How many committee of five persons with a chairperson can be selected from 12 persons.

योग

उत्तर

Total number of Persons = 12

Number of persons to be selected = 5

Out of 5, there is a chairperson

∴ Number of ways of selecting a chairperson = 12C1 = 12

Number of ways of selecting other 4 numbers out of remaining 11 persons = 11C4

∴ Total number of ways = 12C1 × 11C4

= `12 xx (11*10*9*8)/(4*3*2*1)`

= 12 × 330

= 3960

Hence, the required number of ways = 3960.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Permutations and Combinations - Exercise [पृष्ठ १२२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 7 Permutations and Combinations
Exercise | Q 6 | पृष्ठ १२२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.


How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?


Compute:

\[\frac{11! - 10!}{9!}\]

In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent the class in a function. In how many ways can the teacher make this selection?


A coin is tossed five times and outcomes are recorded. How many possible outcomes are there?


Since the  number has to be greater than 8000, the thousand's place can be filled by only two digits, i.e. 8 and 9.
Now, the hundred's place can be filled with the remaining 4 digits as the repetition of the digits is not allowed.
The ten's place can be filled with the remaining 3 digits.
The unit's place can be filled with the remaining 2 digits.
Total numbers that can be formed = `2xx4xx3xx2=48`


How many odd numbers less than 1000 can be formed by using the digits 0, 3, 5, 7 when repetition of digits is not allowed?


How many 3-digit numbers are there, with distinct digits, with each digit odd?


How many different numbers of six digits each can be formed from the digits 4, 5, 6, 7, 8, 9 when repetition of digits is not allowed?


If nC4 = nC6, find 12Cn.


If n +2C8 : n − 2P4 = 57 : 16, find n.


A sports team of 11 students is to be constituted, choosing at least 5 from class XI and at least 5 from class XII. If there are 20 students in each of these classes, in how many ways can the teams be constituted?


A student has to answer 10 questions, choosing at least 4 from each of part A and part B. If there are 6 questions in part A and 7 in part B, in how many ways can the student choose 10 questions?


In a village, there are 87 families of which 52 families have at most 2 children. In a rural development programme, 20 families are to be helped chosen for assistance, of which at least 18 families must have at most 2 children. In how many ways can the choice be made?


Determine the number of 5 cards combinations out of a deck of 52 cards if at least one of the 5 cards has to be a king?


A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.


In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?


A business man hosts a dinner to 21 guests. He is having 2 round tables which can accommodate 15 and 6 persons each. In how many ways can he arrange the guests?


If 20Cr = 20Cr−10, then 18Cr is equal to


If nC12 = nC8 , then n =


Find n if `""^6"P"_2 = "n" ""^6"C"_2`


Find n if `""^(2"n")"C"_3: ""^"n""C"_2` = 52:3


All the letters of the word ‘EAMCOT’ are arranged in different possible ways. The number of such arrangements in which no two vowels are adjacent to each other is ______.


If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.


The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.


If number of arrangements of letters of the word "DHARAMSHALA" taken all at a time so that no two alike letters appear together is (4a.5b.6c.7d), (where a, b, c, d ∈ N), then a + b + c + d is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×