हिंदी

If N +2c8 : N − 2p4 = 57 : 16, Find N. - Mathematics

Advertisements
Advertisements

प्रश्न

If n +2C8 : n − 2P4 = 57 : 16, find n.

उत्तर

\[\Rightarrow \frac{{}^{n + 2} C_8}{{}^{n - 2} P_4} = \frac{57}{16}\]
\[ \Rightarrow \frac{(n + 2)!}{8! (n - 6)!} \times \frac{(n - 6)!}{(n - 2)!} = \frac{57}{16}\]
\[ \Rightarrow \frac{(n + 2) (n + 1) n (n - 1) (n - 2)!}{8!} \times \frac{1}{(n - 2)!} = \frac{57}{16}\]
\[ \Rightarrow (n + 2) (n + 1) n (n - 1) = \frac{57}{16} \times 8! = \frac{19 \times 3}{16} \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1\]
\[ \Rightarrow (n + 2) (n + 1) n (n - 1) = 143640\]
\[ \Rightarrow (n - 1) n (n + 1) (n + 2) = 19 \times 3 \times 7 \times 6 \times 5 \times 4 \times 3\]
\[ \Rightarrow (n - 1) n (n + 1) (n + 2) = 19 \times (3 \times 7) \times (6 \times 3) \times (4 \times 5)\]
\[ \Rightarrow (n - 1) n (n + 1) (n + 2) = 18 \times 19 \times 20 \times 21\]
\[ \Rightarrow n - 1 = 18\]
\[ \Rightarrow n = 19\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Combinations - Exercise 17.1 [पृष्ठ ८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 17 Combinations
Exercise 17.1 | Q 10 | पृष्ठ ८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Compute:

\[\frac{11! - 10!}{9!}\]

How many three-digit numbers are there with no digit repeated?


How many different five-digit number licence plates can be made if

the first-digit cannot be zero, but the repetition of digits is allowed?


How many odd numbers less than 1000 can be formed by using the digits 0, 3, 5, 7 when repetition of digits is not allowed?


A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.


Evaluate the following:

14C3


If nC12 = nC5, find the value of n.


If nC4 = nC6, find 12Cn.


If 18Cx = 18Cx + 2, find x.


How many different boat parties of 8, consisting of 5 boys and 3 girls, can be made from 25 boys and 10 girls?


In how many ways can a student choose 5 courses out of 9 courses if 2 courses are compulsory for every student?


A student has to answer 10 questions, choosing at least 4 from each of part A and part B. If there are 6 questions in part A and 7 in part B, in how many ways can the student choose 10 questions?


A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?


There are 10 points in a plane of which 4 are collinear. How many different straight lines can be drawn by joining these points.


Find the number of diagonals of , 1.a hexagon


Find the number of (ii) triangles


Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: at least 3 girls?


Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (ii) triangles can be formed by joining them?


How many different words, each containing 2 vowels and 3 consonants can be formed with 5 vowels and 17 consonants?


How many words can be formed by taking 4 letters at a time from the letters of the word 'MORADABAD'?


Find the number of combinations and permutations of 4 letters taken from the word 'EXAMINATION'.


If mC1 nC2 , then


5C1 + 5C2 5C3 + 5C4 +5C5 is equal to


If 43Cr − 6 = 43C3r + 1 , then the value of r is


Find the value of 15C4 + 15C5 


Find the value of 20C1619C16 


Answer the following:

A question paper has 6 questions. How many ways does a student have to answer if he wants to solve at least one question?


The value of `(""^9"C"_0 + ""^9"C"_1) + (""^9"C"_1 + ""^9"C"_2) + ... + (""^9"C"_8 + ""^9"C"_9)` is ______ 


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.


Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to ______.


The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.


A committee of 6 is to be chosen from 10 men and 7 women so as to contain atleast 3 men and 2 women. In how many different ways can this be done if two particular women refuse to serve on the same committee ______.


Eighteen guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is `(11!)/(5!6!) (9!)(9!)`.


To fill 12 vacancies there are 25 candidates of which 5 are from scheduled castes. If 3 of the vacancies are reserved for scheduled caste candidates while the rest are open to all, the number of ways in which the selection can be made is 5C3 × 20C9.


There are ten boys B1, B2, ...., B10 and five girls G1, G2, ...., G5 in a class. Then the number of ways of forming a group consisting of three boys and three girls, if both B1 and B2 together should not be the members of a group is ______.


The number of words, with or without meaning, that can be formed by taking 4 letters at a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×