Advertisements
Advertisements
प्रश्न
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
उत्तर
Ways to select 2 balls out of 5 black balls = 5C2
Ways to select 3 balls out of 6 red balls = 6C3
Total ways of selecting 2 black and 3 red balls out of 5 black and 6 red balls.
=5C2 × 6C3
= `(5!)/(2!3!) xx (6!)/(3!3!)`
= `(5 xx 4)/(2) xx (6 xx 5 xx 4)/(3 xx 2 xx 1)`
= 10 x 20
= 200
APPEARS IN
संबंधित प्रश्न
How many chords can be drawn through 21 points on a circle?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of:
(i) exactly 3 girls?
(ii) atleast 3 girls?
(iii) atmost 3 girls?
It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?
A person wants to buy one fountain pen, one ball pen and one pencil from a stationery shop. If there are 10 fountain pen varieties, 12 ball pen varieties and 5 pencil varieties, in how many ways can he select these articles?
A coin is tossed five times and outcomes are recorded. How many possible outcomes are there?
There are 6 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next three have 2 each?
A team consists of 6 boys and 4 girls and other has 5 boys and 3 girls. How many single matches can be arranged between the two teams when a boy plays against a boy and a girl plays against a girl?
How many different five-digit number licence plates can be made if
the first-digit cannot be zero, but the repetition of digits is allowed?
How many 3-digit numbers are there, with distinct digits, with each digit odd?
Evaluate the following:
35C35
Evaluate the following:
If 15Cr : 15Cr − 1 = 11 : 5, find r.
In how many ways can a student choose 5 courses out of 9 courses if 2 courses are compulsory for every student?
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?
How many triangles can be obtained by joining 12 points, five of which are collinear?
In a village, there are 87 families of which 52 families have at most 2 children. In a rural development programme, 20 families are to be helped chosen for assistance, of which at least 18 families must have at most 2 children. In how many ways can the choice be made?
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
A business man hosts a dinner to 21 guests. He is having 2 round tables which can accommodate 15 and 6 persons each. In how many ways can he arrange the guests?
A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?
There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two of them is
There are 13 players of cricket, out of which 4 are bowlers. In how many ways a team of eleven be selected from them so as to include at least two bowlers?
The number of ways in which a host lady can invite for a party of 8 out of 12 people of whom two do not want to attend the party together is
If n + 1C3 = 2 · nC2 , then n =
Find the number of ways of drawing 9 balls from a bag that has 6 red balls, 5 green balls, and 7 blue balls so that 3 balls of every colour are drawn.
There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection.
Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections.
Find the value of 80C2
Find the value of 15C4 + 15C5
A convex polygon has 44 diagonals. Find the number of its sides.
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they can be of any colour
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.
Given 5 different green dyes, four different blue dyes and three different red dyes, the number of combinations of dyes which can be chosen taking at least one green and one blue dye is ______.
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.
There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:
C1 | C2 |
(a) One book of each subject; | (i) 3968 |
(b) At least one book of each subject: | (ii) 60 |
(c) At least one book of English: | (iii) 3255 |
Total number of 6-digit numbers in which only and all the five digits 1, 3, 5, 7 and 9 appear is ______.