हिंदी

A Team Consists of 6 Boys and 4 Girls and Other Has 5 Boys and 3 Girls. How Many Single Matches Can Be Arranged Between the Two Teams When a Boy Plays Against a Boy and a Girl Plays Against a Girl? - Mathematics

Advertisements
Advertisements

प्रश्न

A team consists of 6 boys and 4 girls and other has 5 boys and 3 girls. How many single matches can be arranged between the two teams when a boy plays against a boy and a girl plays against a girl?

उत्तर

A boy can be selected from the first team in 6 ways and from the second team in 5 ways.
∴ Number of ways of arranging a match between the boys of the two teams = 6\[\times\]5 = 30

Similarly, A girl can be selected from the first team in 4 ways and from the second team in 3 ways.
∴ Number of ways of arranging a match between the girls of the two teams = 4\[\times\]3= 12

∴ Total number of matches = 30 + 12 = 42

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Permutations - Exercise 16.2 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 16 Permutations
Exercise 16.2 | Q 12 | पृष्ठ १५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?


How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?


A letter lock consists of three rings each marked with 10 different letters. In how many ways it is possible to make an unsuccessful attempt to open the lock?


How many A.P.'s with 10 terms are there whose first term is in the set {1, 2, 3} and whose common difference is in the set {1, 2, 3, 4, 5}?


How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?


Since the  number has to be greater than 8000, the thousand's place can be filled by only two digits, i.e. 8 and 9.
Now, the hundred's place can be filled with the remaining 4 digits as the repetition of the digits is not allowed.
The ten's place can be filled with the remaining 3 digits.
The unit's place can be filled with the remaining 2 digits.
Total numbers that can be formed = `2xx4xx3xx2=48`


In how many ways can six persons be seated in a row?


Evaluate the following:

12C10


Evaluate the following:

n + 1Cn


If 15Cr : 15Cr − 1 = 11 : 5, find r.


If 28C2r : 24C2r − 4 = 225 : 11, find r.


If 2nC3 : nC2 = 44 : 3, find n.


How many different boat parties of 8, consisting of 5 boys and 3 girls, can be made from 25 boys and 10 girls?


In how many ways can a football team of 11 players be selected from 16 players? How many of these will

include 2 particular players?


How many different selections of 4 books can be made from 10 different books, if
two particular books are always selected;


In a village, there are 87 families of which 52 families have at most 2 children. In a rural development programme, 20 families are to be helped chosen for assistance, of which at least 18 families must have at most 2 children. In how many ways can the choice be made?


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?


In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?


A parallelogram is cut by two sets of m lines parallel to its sides. Find the number of parallelograms thus formed.


Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (ii) triangles can be formed by joining them?


How many words can be formed by taking 4 letters at a time from the letters of the word 'MORADABAD'?


A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?


If nC12 = nC8 , then n =


There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two of them is


The number of ways in which a host lady can invite for a party of 8 out of 12 people of whom two do not want to attend the party together is


How many different committees of 5 can be formed from 6 men and 4 women on which exact 3 men and 2 women serve?
(a) 6
(b) 20
(c) 60
(d) 120


If 43Cr − 6 = 43C3r + 1 , then the value of r is


The number of diagonals that can be drawn by joining the vertices of an octagon is


There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?


Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections.


There are 8 doctors and 4 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team.


Find the value of 15C4 


Find the value of 15C4 + 15C5 


The value of `(""^9"C"_0 + ""^9"C"_1) + (""^9"C"_1 + ""^9"C"_2) + ... + (""^9"C"_8 + ""^9"C"_9)` is ______ 


We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can selections be made?


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they can be of any colour


The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.


There are 12 balls numbered from 1 to 12. The number of ways in which they can be used to fill 8 places in a row so that the balls are with numbers in ascending or descending order is equal to ______.


From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on the shelf so that the dictionary is always in the middle. Then, the number of such arrangements is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×