मराठी

5c1 + 5c2 + 5c3 + 5c4 +5c5 is Equal to (A) 30 (B) 31 (C) 32 (D) 33 - Mathematics

Advertisements
Advertisements

प्रश्न

5C1 + 5C2 5C3 + 5C4 +5C5 is equal to

पर्याय

  • 30

  • 31

  • 32

  • 33

MCQ

उत्तर

 31

\[{}^5 C_1 + {}^5 C_2 + {}^5 C_3 + {}^5 C_4 + {}^5 C_5\]
\[= {}^5 C_1 + {}^5 C_2 + {}^5 C_2 +^5 C_1 + {}^5 C_5\]

\[= 2 \times^5 C_1 + 2 \times {}^5 C_2 +^5 C_5 \]
\[ = 2 \times 5 + 2 \times \frac{5!}{2! 3!} + 1 \]
\[ = 10 + 20 + 1 \]
\[ = 31\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Combinations - Exercise 17.5 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 17 Combinations
Exercise 17.5 | Q 10 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Determine n if  `""^(2n)C_3 : ""^nC_3 = 11: 1`


In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?


How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?


From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?


A person wants to buy one fountain pen, one ball pen and one pencil from a stationery shop. If there are 10 fountain pen varieties, 12 ball pen varieties and 5 pencil varieties, in how many ways can he select these articles?


There are 6 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next three have 2 each?


There are 5 books on Mathematics and 6 books on Physics in a book shop. In how many ways can a students buy : (i) a Mathematics book and a Physics book (ii) either a Mathematics book or a Physics book?


How many odd numbers less than 1000 can be formed by using the digits 0, 3, 5, 7 when repetition of digits is not allowed?


If 8Cr − 7C3 = 7C2, find r.


If 2nC3 : nC2 = 44 : 3, find n.


How many different boat parties of 8, consisting of 5 boys and 3 girls, can be made from 25 boys and 10 girls?


In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl? 


Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: exactly 3 girls?


Write \[\sum^m_{r = 0} \ ^{n + r}{}{C}_r\] in the simplified form.


There are 3 letters and 3 directed envelopes. Write the number of ways in which no letter is put in the correct envelope.


If nCr + nCr + 1 = n + 1Cx , then x =


Three persons enter a railway compartment. If there are 5 seats vacant, in how many ways can they take these seats?


There are 13 players of cricket, out of which 4 are bowlers. In how many ways a team of eleven be selected from them so as to include at least two bowlers?


The number of ways in which a host lady can invite for a party of 8 out of 12 people of whom two do not want to attend the party together is


If 43Cr − 6 = 43C3r + 1 , then the value of r is


A lady gives a dinner party for six guests. The number of ways in which they may be selected from among ten friends if two of the friends will not attend the party together is


If n + 1C3 = 2 · nC2 , then n =


The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is


Find n if `""^(2"n")"C"_3: ""^"n""C"_2` = 52:3


The value of `(""^9"C"_0 + ""^9"C"_1) + (""^9"C"_1 + ""^9"C"_2) + ... + (""^9"C"_8 + ""^9"C"_9)` is ______ 


In how many ways a committee consisting of 3 men and 2 women, can be chosen from 7 men and 5 women?


How many committee of five persons with a chairperson can be selected from 12 persons.


A convex polygon has 44 diagonals. Find the number of its sides.


In how many ways can a football team of 11 players be selected from 16 players? How many of them will exclude 2 particular players?


If nC12 = nC8, then n is equal to ______.


There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:

C1 C2
(a) One book of each subject; (i) 3968
(b) At least one book of each subject: (ii) 60
(c) At least one book of English: (iii) 3255

All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.


A badminton club has 10 couples as members. They meet to organise a mixed double match. If each wife refers to p artner as well as oppose her husband in the match, then the number of different ways can the match off will be ______.


There are 12 persons seated in a line. Number of ways in which 3 persons can be selected such that atleast two of them are consecutive, is ______.


The number of numbers between 2,000 and 5,000 that can be formed with the digits 0, 1, 2, 3, 4, (repetition of digits is not allowed) and are multiple of 3 is?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×