Advertisements
Advertisements
प्रश्न
There are 3 letters and 3 directed envelopes. Write the number of ways in which no letter is put in the correct envelope.
उत्तर
Total number of ways in which the letters can be put = 3! = 6
Suppose, out of the three letters, one has been put in the correct envelope.
This can be done in 3C1, i.e. 3, ways.
Now, out of three, if two letters have been put in the correct envelope, then the last one has been put in the correct envelope as well.
This can be done in 3C3, i.e. one way.
∴ Number of ways = 3 + 1 = 4
∴ Number of ways in which no letter is put in the correct envelope = 6 - 4 = 2
APPEARS IN
संबंधित प्रश्न
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in each combination.
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?
How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?
How many 6-digit numbers can be formed from the digits 0, 1, 3, 5, 7 and 9 which are divisible by 10 and no digit is repeated?
The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet?
Prove that
A mint prepares metallic calendars specifying months, dates and days in the form of monthly sheets (one plate for each month). How many types of calendars should it prepare to serve for all the possibilities in future years?
In how many ways can an examinee answer a set of ten true/false type questions?
How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?
Evaluate the following:
12C10
If nC4 = nC6, find 12Cn.
f 24Cx = 24C2x + 3, find x.
If 15Cr : 15Cr − 1 = 11 : 5, find r.
If 28C2r : 24C2r − 4 = 225 : 11, find r.
If nC4 , nC5 and nC6 are in A.P., then find n.
In how many ways can a student choose 5 courses out of 9 courses if 2 courses are compulsory for every student?
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular professor is included.
How many different selections of 4 books can be made from 10 different books, if two particular books are never selected?
Find the number of diagonals of (ii) a polygon of 16 sides.
A parallelogram is cut by two sets of m lines parallel to its sides. Find the number of parallelograms thus formed.
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (ii) triangles can be formed by joining them?
A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?
If 20Cr = 20Cr−10, then 18Cr is equal to
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to
The number of ways in which a host lady can invite for a party of 8 out of 12 people of whom two do not want to attend the party together is
Find the value of 80C2
The value of `(""^9"C"_0 + ""^9"C"_1) + (""^9"C"_1 + ""^9"C"_2) + ... + (""^9"C"_8 + ""^9"C"_9)` is ______
How many committee of five persons with a chairperson can be selected from 12 persons.
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if two must be white and two red
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.
Everybody in a room shakes hands with everybody else. The total number of handshakes is 66. The total number of persons in the room is ______.
The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.
In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is ______.
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.
The value of `""^50"C"_4 + sum_("r" = 1)^6 ""^(56 - "r")"C"_3` is ______.
There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is ______.
All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.