Advertisements
Advertisements
प्रश्न
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
उत्तर
A team of 3 boys and 3 girls is to be selected from 5 boys and 4 girls.
3 boys can be selected from 5 boys in `""^5C_3` ways.
3 girls can be selected from 4 girls in `""^4C_3 `ways.
Therefore, by multiplication principle, number of ways in which a team of 3 boys and 3 girls can be selected
= 5C3 x 4C3
= `(5!)/(3!2!) xx (4!)/(3!1!)`
= `(5 xx 4 xx 3!)/(3! xx 2) xx (4 xx 3!)/(3!)`
= 10 x 4 = 40
APPEARS IN
संबंधित प्रश्न
If nC8 = nC2, find nC2.
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?
There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?
How many three-digit numbers are there?
How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?
How many different numbers of six digits each can be formed from the digits 4, 5, 6, 7, 8, 9 when repetition of digits is not allowed?
Evaluate the following:
14C3
If 18Cx = 18Cx + 2, find x.
If 15Cr : 15Cr − 1 = 11 : 5, find r.
How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7, 11 (without repetition)?
A sports team of 11 students is to be constituted, choosing at least 5 from class XI and at least 5 from class XII. If there are 20 students in each of these classes, in how many ways can the teams be constituted?
Find the number of diagonals of (ii) a polygon of 16 sides.
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has(iii) at least 3 girls?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: exactly 3 girls?
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (ii) triangles can be formed by joining them?
How many different words, each containing 2 vowels and 3 consonants can be formed with 5 vowels and 17 consonants?
Write \[\sum^m_{r = 0} \ ^{n + r}{}{C}_r\] in the simplified form.
If 20Cr = 20Cr−10, then 18Cr is equal to
If mC1 = nC2 , then
Find n if `""^6"P"_2 = "n" ""^6"C"_2`
Find n if `""^(2"n")"C"_3: ""^"n""C"_2` = 52:3
There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?
Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?
There are 8 doctors and 4 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team.
In a small village, there are 87 families, of which 52 families have atmost 2 children. In a rural development programme 20 families are to be chosen for assistance, of which atleast 18 families must have at most 2 children. In how many ways can the choice be made?
If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they can be of any colour
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.
In how many ways can a football team of 11 players be selected from 16 players? How many of them will include 2 particular players?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least one boy and one girl
In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is ______.
The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.
A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed is ______.
If number of arrangements of letters of the word "DHARAMSHALA" taken all at a time so that no two alike letters appear together is (4a.5b.6c.7d), (where a, b, c, d ∈ N), then a + b + c + d is equal to ______.
Number of selections of at least one letter from the letters of MATHEMATICS, is ______.