मराठी

How Many Different Numbers of Six Digits Each Can Be Formed from the Digits 4, 5, 6, 7, 8, 9 When Repetition of Digits is Not Allowed? - Mathematics

Advertisements
Advertisements

प्रश्न

How many different numbers of six digits each can be formed from the digits 4, 5, 6, 7, 8, 9 when repetition of digits is not allowed?

उत्तर

Number of ways of filling the first digit = 6
Number of ways of filling the second digit = 5
(as repetition is not allowed)
Number of ways of filling the third digit = 4
Number of ways of filling the fourth digit =3
Number of ways of filling the fifth digit = 2
Number of ways of filling the sixth digit = 1
Total numbers = `6xx5xx4xx3xx2xx1=720`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Permutations - Exercise 16.2 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 16 Permutations
Exercise 16.2 | Q 26 | पृष्ठ १५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Determine n if  `""^(2n)C_3 : ""^nC_3 = 11: 1`


How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of:

(i) exactly 3 girls?

(ii) atleast 3 girls?

(iii) atmost 3 girls?


If the different permutations of all the letter of the word EXAMINATION are listed as in a dictionary, how many words are there in this list before the first word starting with E?


The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet?


Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.


Compute:

\[\frac{11! - 10!}{9!}\]

There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?


There are 5 books on Mathematics and 6 books on Physics in a book shop. In how many ways can a students buy : (i) a Mathematics book and a Physics book (ii) either a Mathematics book or a Physics book?


How many three-digit numbers are there with no digit repeated?


How many three-digit numbers are there?


How many 3-digit numbers are there, with distinct digits, with each digit odd?


Evaluate the following:

\[\sum^5_{r = 1} {}^5 C_r\]

 


In how many ways can a football team of 11 players be selected from 16 players? How many of these will

include 2 particular players?


There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular professor is included.


From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer


Find the number of diagonals of , 1.a hexagon


Find the number of diagonals of (ii) a polygon of 16 sides.


In how many ways can a committee of 5 persons be formed out of 6 men and 4 women when at least one woman has to be necessarily selected?


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl? 


Find the number of (ii) triangles


Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (ii) triangles can be formed by joining them?


If C (n, 12) = C (n, 8), then C (22, n) is equal to


If nCr + nCr + 1 = n + 1Cx , then x =


In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?


There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two of them is


The number of diagonals that can be drawn by joining the vertices of an octagon is


Find n if `""^(2"n")"C"_3: ""^"n""C"_2` = 52:3


Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections.


A student finds 7 books of his interest, but can borrow only three books. He wants to borrow Chemistry part II book only if Chemistry Part I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.


Find the value of 80C2


All the letters of the word ‘EAMCOT’ are arranged in different possible ways. The number of such arrangements in which no two vowels are adjacent to each other is ______.


The straight lines l1, l2 and l3 are parallel and lie in the same plane. A total numbers of m points are taken on l1; n points on l2, k points on l3. The maximum number of triangles formed with vertices at these points are ______.


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they can be of any colour


A committee of 6 is to be chosen from 10 men and 7 women so as to contain atleast 3 men and 2 women. In how many different ways can this be done if two particular women refuse to serve on the same committee ______.


A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed is ______.


A badminton club has 10 couples as members. They meet to organise a mixed double match. If each wife refers to p artner as well as oppose her husband in the match, then the number of different ways can the match off will be ______.


There are (n + 1) white and (n + 1) black balls each set numbered 1 to (n + 1). The number of ways in which the balls can be arranged in row so that the adjacent balls are of different colours is ______.


The number of numbers between 2,000 and 5,000 that can be formed with the digits 0, 1, 2, 3, 4, (repetition of digits is not allowed) and are multiple of 3 is?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×