Advertisements
Advertisements
प्रश्न
How many 3-digit numbers are there, with distinct digits, with each digit odd?
उत्तर
The hundred's place can be filled by {1, 3, 5, 7, 9), i.e. 5 digits.
The ten's place can now be filled by 4 digits (as one digit is already used in the hundred's place and repetition is not allowed )
Similarly, the unit's place can be filled by 3 digits.
Total number of 3-digit numbers = `5xx4xx3=60`
APPEARS IN
संबंधित प्रश्न
How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?
If the different permutations of all the letter of the word EXAMINATION are listed as in a dictionary, how many words are there in this list before the first word starting with E?
Prove that
In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent the class in a function. In how many ways can the teacher make this selection?
There are 6 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next three have 2 each?
There are 5 books on Mathematics and 6 books on Physics in a book shop. In how many ways can a students buy : (i) a Mathematics book and a Physics book (ii) either a Mathematics book or a Physics book?
From among the 36 teachers in a college, one principal, one vice-principal and the teacher-incharge are to be appointed. In how many ways can this be done?
How many three-digit numbers are there?
How many different numbers of six digits each can be formed from the digits 4, 5, 6, 7, 8, 9 when repetition of digits is not allowed?
If 15C3r = 15Cr + 3, find r.
If 8Cr − 7C3 = 7C2, find r.
If 15Cr : 15Cr − 1 = 11 : 5, find r.
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
include 2 particular players?
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
exclude 2 particular players?
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular student is excluded.
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
How many words can be formed by taking 4 letters at a time from the letters of the word 'MORADABAD'?
Find the number of combinations and permutations of 4 letters taken from the word 'EXAMINATION'.
There are 3 letters and 3 directed envelopes. Write the number of ways in which no letter is put in the correct envelope.
If 15C3r = 15Cr + 3 , then r is equal to
If nCr + nCr + 1 = n + 1Cx , then x =
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to
There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two of them is
If C0 + C1 + C2 + ... + Cn = 256, then 2nC2 is equal to
Given 11 points, of which 5 lie on one circle, other than these 5, no 4 lie on one circle. Then the number of circles that can be drawn so that each contains at least 3 of the given points is
The number of diagonals that can be drawn by joining the vertices of an octagon is
The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is
Find the number of ways of dividing 20 objects in three groups of sizes 8, 7, and 5.
Find the value of 15C4 + 15C5
A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected from the lot.
A box contains two white, three black and four red balls. In how many ways can three balls be drawn from the box, if atleast one black ball is to be included in the draw
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
The number of ways in which we can choose a committee from four men and six women so that the committee includes at least two men and exactly twice as many women as men is ______.
Eighteen guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is `(11!)/(5!6!) (9!)(9!)`.
There are 12 persons seated in a line. Number of ways in which 3 persons can be selected such that atleast two of them are consecutive, is ______.
The number of words, with or without meaning, that can be formed by taking 4 letters at a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike is ______.