Advertisements
Advertisements
प्रश्न
How many three-digit numbers are there?
उत्तर
Available digits for filling any place = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0}
Since the thousand's place cannot be zero, available digits to fill the thousand's place = 9
Number of ways of filling the ten's digit = 10
Similarly, number of ways of filling the unit's digit = 10
∴ Total number of three digit numbers = 9\[\times\]10\[\times\]10 = 900
APPEARS IN
संबंधित प्रश्न
How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?
How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?
How many 6-digit numbers can be formed from the digits 0, 1, 3, 5, 7 and 9 which are divisible by 10 and no digit is repeated?
The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet?
In how many ways can an examinee answer a set of ten true/false type questions?
How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?
Evaluate the following:
12C10
Evaluate the following:
If n +2C8 : n − 2P4 = 57 : 16, find n.
If 28C2r : 24C2r − 4 = 225 : 11, find r.
If α = mC2, then find the value of αC2.
How many different selections of 4 books can be made from 10 different books, if
two particular books are always selected;
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
Find the number of diagonals of , 1.a hexagon
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has(iii) at least 3 girls?
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
Find the number of ways in which : (b) an arrangement, of four letters can be made from the letters of the word 'PROPORTION'.
If C (n, 12) = C (n, 8), then C (22, n) is equal to
If nC12 = nC8 , then n =
If nCr + nCr + 1 = n + 1Cx , then x =
Three persons enter a railway compartment. If there are 5 seats vacant, in how many ways can they take these seats?
There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two of them is
If 43Cr − 6 = 43C3r + 1 , then the value of r is
A lady gives a dinner party for six guests. The number of ways in which they may be selected from among ten friends if two of the friends will not attend the party together is
Four parallel lines intersect another set of five parallel lines. Find the number of distinct parallelograms that can be formed.
Find the value of 80C2
The value of `(""^9"C"_0 + ""^9"C"_1) + (""^9"C"_1 + ""^9"C"_2) + ... + (""^9"C"_8 + ""^9"C"_9)` is ______
If nCr – 1 = 36, nCr = 84 and nCr + 1 = 126, then find rC2.
If nC12 = nC8, then n is equal to ______.
Given 5 different green dyes, four different blue dyes and three different red dyes, the number of combinations of dyes which can be chosen taking at least one green and one blue dye is ______.
There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:
C1 | C2 |
(a) In how many ways committee: can be formed | (i) 10C2 × 19C3 |
(b) In how many ways a particular: professor is included | (ii) 10C2 × 19C2 |
(c) In how many ways a particular: lecturer is included | (iii) 9C1 × 20C3 |
(d) In how many ways a particular: lecturer is excluded | (iv) 10C2 × 20C3 |
There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is ______.
The number of positive integers satisfying the inequality `""^(n+1)C_(n-2) - ""^(n+1)C_(n-1) ≤ 100` is ______.
A badminton club has 10 couples as members. They meet to organise a mixed double match. If each wife refers to p artner as well as oppose her husband in the match, then the number of different ways can the match off will be ______.
The number of words, with or without meaning, that can be formed by taking 4 letters at a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike is ______.