मराठी

All the letters of the word ‘EAMCOT’ are arranged in different possible ways. The number of such arrangements in which no two vowels are adjacent to each other is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

All the letters of the word ‘EAMCOT’ are arranged in different possible ways. The number of such arrangements in which no two vowels are adjacent to each other is ______.

पर्याय

  • 360

  • 144

  • 72

  • 54

MCQ
रिकाम्या जागा भरा

उत्तर

All the letters of the word ‘EAMCOT’ are arranged in different possible ways. The number of such arrangements in which no two vowels are adjacent to each other is 144.

Explanation:

We note that there are 3 consonants and 3 vowels E, A and O.

Since no two vowels have to be together, the possible choice for vowels are the places marked as ‘X’.

X M X C X T X, these vowels can be arranged in 4P3 ways 3 consonents can be arranged in 3 ways.

Hence, the required number of ways = 3! × 4P3 = 144.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Permutations and Combinations - Solved Examples [पृष्ठ १२०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 7 Permutations and Combinations
Solved Examples | Q 15 | पृष्ठ १२०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If nC8 = nC2, find nC2.


Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in each combination.


The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet?


From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?


A team consists of 6 boys and 4 girls and other has 5 boys and 3 girls. How many single matches can be arranged between the two teams when a boy plays against a boy and a girl plays against a girl?


Since the  number has to be greater than 8000, the thousand's place can be filled by only two digits, i.e. 8 and 9.
Now, the hundred's place can be filled with the remaining 4 digits as the repetition of the digits is not allowed.
The ten's place can be filled with the remaining 3 digits.
The unit's place can be filled with the remaining 2 digits.
Total numbers that can be formed = `2xx4xx3xx2=48`


How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?


Evaluate the following:

n + 1Cn


A sports team of 11 students is to be constituted, choosing at least 5 from class XI and at least 5 from class XII. If there are 20 students in each of these classes, in how many ways can the teams be constituted?


A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls?


A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?


If 15C3r = 15Cr + 3 , then r is equal to


If mC1 nC2 , then


Three persons enter a railway compartment. If there are 5 seats vacant, in how many ways can they take these seats?


There are 13 players of cricket, out of which 4 are bowlers. In how many ways a team of eleven be selected from them so as to include at least two bowlers?


The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is


Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections.


Find the value of 15C4 


In how many ways can the letters of the word 'IMAGE' be arranged so that the vowels should always occupy odd places?


How many committee of five persons with a chairperson can be selected from 12 persons.


If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?


In how many ways can a football team of 11 players be selected from 16 players? How many of them will exclude 2 particular players?


Everybody in a room shakes hands with everybody else. The total number of handshakes is 66. The total number of persons in the room is ______.


In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is ______.


A committee of 6 is to be chosen from 10 men and 7 women so as to contain atleast 3 men and 2 women. In how many different ways can this be done if two particular women refuse to serve on the same committee ______.


A box contains 2 white balls, 3 black balls and 4 red balls. The number of ways three balls be drawn from the box if at least one black ball is to be included in the draw is ______.


A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed is ______.


If number of arrangements of letters of the word "DHARAMSHALA" taken all at a time so that no two alike letters appear together is (4a.5b.6c.7d), (where a, b, c, d ∈ N), then a + b + c + d is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×