Advertisements
Advertisements
प्रश्न
A box contains 2 white balls, 3 black balls and 4 red balls. The number of ways three balls be drawn from the box if at least one black ball is to be included in the draw is ______.
उत्तर
A box contains 2 white balls, 3 black balls and 4 red balls. The number of ways three balls be drawn from the box if at least one black ball is to be included in the draw is 64.
Explanation:
We have 2 white, 3 black and 4 red balls
It is given that atleast 1 black ball is to be included.
∴ Required number of ways = 3C1 × 6C2 + 3C2 × 6C1 + 3C3
= 3 × 15 + 3 × 6 + 1
= 45 + 18 + 1
= 64
Hence, the value of the filler is 64.
APPEARS IN
संबंधित प्रश्न
If the different permutations of all the letter of the word EXAMINATION are listed as in a dictionary, how many words are there in this list before the first word starting with E?
A letter lock consists of three rings each marked with 10 different letters. In how many ways it is possible to make an unsuccessful attempt to open the lock?
How many A.P.'s with 10 terms are there whose first term is in the set {1, 2, 3} and whose common difference is in the set {1, 2, 3, 4, 5}?
How many different numbers of six digits each can be formed from the digits 4, 5, 6, 7, 8, 9 when repetition of digits is not allowed?
Evaluate the following:
12C10
If 15Cr : 15Cr − 1 = 11 : 5, find r.
If α = mC2, then find the value of αC2.
From a group of 15 cricket players, a team of 11 players is to be chosen. In how many ways can this be done?
In how many ways can a student choose 5 courses out of 9 courses if 2 courses are compulsory for every student?
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
exclude 2 particular players?
How many different selections of 4 books can be made from 10 different books, if
two particular books are always selected;
From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls?
5C1 + 5C2 + 5C3 + 5C4 +5C5 is equal to
How many different committees of 5 can be formed from 6 men and 4 women on which exact 3 men and 2 women serve?
(a) 6
(b) 20
(c) 60
(d) 120
The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is
If n + 1C3 = 2 · nC2 , then n =
A student finds 7 books of his interest, but can borrow only three books. He wants to borrow Chemistry part II book only if Chemistry Part I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.
A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?
In how many ways a committee consisting of 3 men and 2 women, can be chosen from 7 men and 5 women?
The straight lines l1, l2 and l3 are parallel and lie in the same plane. A total numbers of m points are taken on l1; n points on l2, k points on l3. The maximum number of triangles formed with vertices at these points are ______.
If nC12 = nC8, then n is equal to ______.
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.
If number of arrangements of letters of the word "DHARAMSHALA" taken all at a time so that no two alike letters appear together is (4a.5b.6c.7d), (where a, b, c, d ∈ N), then a + b + c + d is equal to ______.
The number of numbers between 2,000 and 5,000 that can be formed with the digits 0, 1, 2, 3, 4, (repetition of digits is not allowed) and are multiple of 3 is?