मराठी

If Nc4 = Nc6, Find 12cn. - Mathematics

Advertisements
Advertisements

प्रश्न

If nC4 = nC6, find 12Cn.

उत्तर

We have,
\[{}^n C_4 = {}^n C_6\]

\[\Rightarrow n = 6 + 4 = 10\]  [∵ \[{}^n C_x = {}^n C_y \Rightarrow x = y\]]  or, \[n = x + y\]
Now, \[{}^{12} C_{10} = {}^{12} C_2\][∵ \[{}^n C_r = {}^n C_{n - r}\]]
\[\Rightarrow^{12} C_{10} =^{12} C_2 = \frac{12}{2} \times \frac{11}{1} \times^{10} C_0\] [∵ \[{}^n C_r = \frac{n}{r} {}^{n - 1} C_{r - 1}\]]
\[\Rightarrow {}^{12} C_{10} = 66\]  [∵\[{}^n C_0 = 1\]]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Combinations - Exercise 17.1 [पृष्ठ ८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 17 Combinations
Exercise 17.1 | Q 3 | पृष्ठ ८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Determine n if  `""^(2n)C_3 : ""^nC_3 = 11: 1`


Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.


How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?


In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?


Compute:

\[\frac{11! - 10!}{9!}\]

Since the  number has to be greater than 8000, the thousand's place can be filled by only two digits, i.e. 8 and 9.
Now, the hundred's place can be filled with the remaining 4 digits as the repetition of the digits is not allowed.
The ten's place can be filled with the remaining 3 digits.
The unit's place can be filled with the remaining 2 digits.
Total numbers that can be formed = `2xx4xx3xx2=48`


How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?


A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.


If n +2C8 : n − 2P4 = 57 : 16, find n.


In how many ways can a football team of 11 players be selected from 16 players? How many of these will

include 2 particular players?


A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?


There are 10 points in a plane of which 4 are collinear. How many different straight lines can be drawn by joining these points.


We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?


Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.


A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.


In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?


Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (i) straight lines


Find the number of ways in which : (a) a selection


If nC12 = nC8 , then n =


The number of ways in which a host lady can invite for a party of 8 out of 12 people of whom two do not want to attend the party together is


Given 11 points, of which 5 lie on one circle, other than these 5, no 4 lie on one circle. Then the number of circles that can be drawn so that each contains at least 3 of the given points is


If 43Cr − 6 = 43C3r + 1 , then the value of r is


The number of diagonals that can be drawn by joining the vertices of an octagon is


Find n and r if `""^"n""P"_"r"` = 720 and `""^"n""C"_("n" - "r")` = 120


Find the value of 80C2


A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?


A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?


In how many ways a committee consisting of 3 men and 2 women, can be chosen from 7 men and 5 women?


All the letters of the word ‘EAMCOT’ are arranged in different possible ways. The number of such arrangements in which no two vowels are adjacent to each other is ______.


We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can selections be made?


How many committee of five persons with a chairperson can be selected from 12 persons.


If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?


In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.


In how many ways can a football team of 11 players be selected from 16 players? How many of them will include 2 particular players?


To fill 12 vacancies there are 25 candidates of which 5 are from scheduled castes. If 3 of the vacancies are reserved for scheduled caste candidates while the rest are open to all, the number of ways in which the selection can be made is 5C3 × 20C9.


There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:

C1 C2
(a) In how many ways committee: can be formed (i) 10C2 × 19C3 
(b) In how many ways a particular: professor is included (ii) 10C2 × 19C2
(c) In how many ways a particular: lecturer is included (iii) 9C1 × 20C3
(d) In how many ways a particular: lecturer is excluded (iv) 10C2 × 20C3

Total number of 6-digit numbers in which only and all the five digits 1, 3, 5, 7 and 9 appear is ______.


The number of numbers between 2,000 and 5,000 that can be formed with the digits 0, 1, 2, 3, 4, (repetition of digits is not allowed) and are multiple of 3 is?


The number of words, with or without meaning, that can be formed by taking 4 letters at a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×