Advertisements
Advertisements
प्रश्न
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (i) straight lines
उत्तर
Number of straight lines formed joining the 18 points, taking 2 points at a time = \[{}^{18} C_2 = \frac{18}{2} \times \frac{17}{1} = 153\]
But, when 5 collinear points are joined pair wise, they give only one line.
∴ Required number of straight lines =\[153 - 10 + 1 = 144\]
APPEARS IN
संबंधित प्रश्न
In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?
Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.
Compute:
Compute:
L.C.M. (6!, 7!, 8!)
Given 7 flags of different colours, how many different signals can be generated if a signal requires the use of two flags, one below the other?
How many different five-digit number licence plates can be made if
the first-digit cannot be zero, but the repetition of digits is allowed?
Evaluate the following:
35C35
If nC4 = nC6, find 12Cn.
If 15C3r = 15Cr + 3, find r.
If 8Cr − 7C3 = 7C2, find r.
If 28C2r : 24C2r − 4 = 225 : 11, find r.
From a class of 12 boys and 10 girls, 10 students are to be chosen for a competition; at least including 4 boys and 4 girls. The 2 girls who won the prizes last year should be included. In how many ways can the selection be made?
How many different selections of 4 books can be made from 10 different books, if
two particular books are always selected;
Find the number of diagonals of , 1.a hexagon
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
A parallelogram is cut by two sets of m lines parallel to its sides. Find the number of parallelograms thus formed.
If\[\ ^{( a^2 - a)}{}{C}_2 = \ ^{( a^2 - a)}{}{C}_4\] , then a =
Three persons enter a railway compartment. If there are 5 seats vacant, in how many ways can they take these seats?
If 43Cr − 6 = 43C3r + 1 , then the value of r is
The number of diagonals that can be drawn by joining the vertices of an octagon is
Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?
Find the number of ways of dividing 20 objects in three groups of sizes 8, 7, and 5.
Find the value of 20C16 – 19C16
The value of `(""^9"C"_0 + ""^9"C"_1) + (""^9"C"_1 + ""^9"C"_2) + ... + (""^9"C"_8 + ""^9"C"_9)` is ______
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected from the lot.
A box contains two white, three black and four red balls. In how many ways can three balls be drawn from the box, if atleast one black ball is to be included in the draw
In how many ways can a football team of 11 players be selected from 16 players? How many of them will include 2 particular players?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.
Everybody in a room shakes hands with everybody else. The total number of handshakes is 66. The total number of persons in the room is ______.
If some or all of n objects are taken at a time, the number of combinations is 2n – 1.
There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:
C1 | C2 |
(a) One book of each subject; | (i) 3968 |
(b) At least one book of each subject: | (ii) 60 |
(c) At least one book of English: | (iii) 3255 |
The number of numbers between 2,000 and 5,000 that can be formed with the digits 0, 1, 2, 3, 4, (repetition of digits is not allowed) and are multiple of 3 is?
There are ten boys B1, B2, ...., B10 and five girls G1, G2, ...., G5 in a class. Then the number of ways of forming a group consisting of three boys and three girls, if both B1 and B2 together should not be the members of a group is ______.