Advertisements
Advertisements
प्रश्न
Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.
उत्तर
There are total 4 aces in the deck of 52 cards. So, we are left with 48 cards.
∴ Required ways = \[{}^4 C_1 \times^{48} C_4 = \frac{4}{1} \times \frac{48}{4} \times \frac{47}{3} \times \frac{46}{2} \times \frac{45}{1} = 778320\]
APPEARS IN
संबंधित प्रश्न
If nC8 = nC2, find nC2.
In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?
Compute:
(i)\[\frac{30!}{28!}\]
In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent the class in a function. In how many ways can the teacher make this selection?
How many three-digit numbers are there?
How many 9-digit numbers of different digits can be formed?
How many different numbers of six digits each can be formed from the digits 4, 5, 6, 7, 8, 9 when repetition of digits is not allowed?
How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?
How many four digit different numbers, greater than 5000 can be formed with the digits 1, 2, 5, 9, 0 when repetition of digits is not allowed?
Evaluate the following:
If 15C3r = 15Cr + 3, find r.
If α = mC2, then find the value of αC2.
From a group of 15 cricket players, a team of 11 players is to be chosen. In how many ways can this be done?
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
exclude 2 particular players?
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular student is included.
A sports team of 11 students is to be constituted, choosing at least 5 from class XI and at least 5 from class XII. If there are 20 students in each of these classes, in how many ways can the teams be constituted?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls?
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (ii) triangles can be formed by joining them?
Find the number of ways in which : (a) a selection
Find the number of combinations and permutations of 4 letters taken from the word 'EXAMINATION'.
If 20Cr = 20Cr−10, then 18Cr is equal to
Given 11 points, of which 5 lie on one circle, other than these 5, no 4 lie on one circle. Then the number of circles that can be drawn so that each contains at least 3 of the given points is
The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is
Find n if `""^(2"n")"C"_3: ""^"n""C"_2` = 52:3
Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?
Find the number of ways of dividing 20 objects in three groups of sizes 8, 7, and 5.
Find the value of 15C4 + 15C5
In how many ways can the letters of the word 'IMAGE' be arranged so that the vowels should always occupy odd places?
There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated.
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they can be of any colour
The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.
There are 12 points in a plane of which 5 points are collinear, then the number of lines obtained by joining these points in pairs is 12C2 – 5C2.
To fill 12 vacancies there are 25 candidates of which 5 are from scheduled castes. If 3 of the vacancies are reserved for scheduled caste candidates while the rest are open to all, the number of ways in which the selection can be made is 5C3 × 20C9.
There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:
C1 | C2 |
(a) One book of each subject; | (i) 3968 |
(b) At least one book of each subject: | (ii) 60 |
(c) At least one book of English: | (iii) 3255 |
There are (n + 1) white and (n + 1) black balls each set numbered 1 to (n + 1). The number of ways in which the balls can be arranged in row so that the adjacent balls are of different colours is ______.
There are ten boys B1, B2, ...., B10 and five girls G1, G2, ...., G5 in a class. Then the number of ways of forming a group consisting of three boys and three girls, if both B1 and B2 together should not be the members of a group is ______.
From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on the shelf so that the dictionary is always in the middle. Then, the number of such arrangements is ______.