Advertisements
Advertisements
Question
If nC4 = nC6, find 12Cn.
Solution
We have,
\[{}^n C_4 = {}^n C_6\]
APPEARS IN
RELATED QUESTIONS
Determine n if `""^(2n)C_3 : ""^nC_3 = 12 : 1`
Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.
Compute:
L.C.M. (6!, 7!, 8!)
Prove that
A coin is tossed five times and outcomes are recorded. How many possible outcomes are there?
In how many ways can an examinee answer a set of ten true/false type questions?
There are 6 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next three have 2 each?
How many three-digit numbers are there with no digit repeated?
How many three-digit numbers are there?
How many different five-digit number licence plates can be made if
the first-digit cannot be zero, but the repetition of digits is allowed?
How many different numbers of six digits each can be formed from the digits 4, 5, 6, 7, 8, 9 when repetition of digits is not allowed?
How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?
How many four digit different numbers, greater than 5000 can be formed with the digits 1, 2, 5, 9, 0 when repetition of digits is not allowed?
Serial numbers for an item produced in a factory are to be made using two letters followed by four digits (0 to 9). If the letters are to be taken from six letters of English alphabet without repetition and the digits are also not repeated in a serial number, how many serial numbers are possible?
A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular professor is included.
There are 10 points in a plane of which 4 are collinear. How many different straight lines can be drawn by joining these points.
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl?
Find the number of (ii) triangles
Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: exactly 3 girls?
A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to
If 43Cr − 6 = 43C3r + 1 , then the value of r is
Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections.
Find the number of ways of dividing 20 objects in three groups of sizes 8, 7, and 5.
There are 8 doctors and 4 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team.
A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?
All the letters of the word ‘EAMCOT’ are arranged in different possible ways. The number of such arrangements in which no two vowels are adjacent to each other is ______.
A convex polygon has 44 diagonals. Find the number of its sides.
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least one boy and one girl
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.
If nC12 = nC8, then n is equal to ______.
Everybody in a room shakes hands with everybody else. The total number of handshakes is 66. The total number of persons in the room is ______.
The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.
Three balls are drawn from a bag containing 5 red, 4 white and 3 black balls. The number of ways in which this can be done if at least 2 are red is ______.
There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:
C1 | C2 |
(a) In how many ways committee: can be formed | (i) 10C2 × 19C3 |
(b) In how many ways a particular: professor is included | (ii) 10C2 × 19C2 |
(c) In how many ways a particular: lecturer is included | (iii) 9C1 × 20C3 |
(d) In how many ways a particular: lecturer is excluded | (iv) 10C2 × 20C3 |
A badminton club has 10 couples as members. They meet to organise a mixed double match. If each wife refers to p artner as well as oppose her husband in the match, then the number of different ways can the match off will be ______.
The no. of different ways, the letters of the word KUMARI can be placed in the 8 boxes of the given figure so that no row remains empty will be ______.