Advertisements
Advertisements
Question
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (ii) triangles can be formed by joining them?
Solution
Number of triangles formed joining the 18 points, taking 3 points at a time =\[{}^{18} C_3 = \frac{18}{3} \times \frac{17}{2} \times \frac{16}{1} = 816\]
Number of straight lines formed joining the 5 points, taking 3 points at a time =\[{}^5 C_3 = \frac{5}{3} \times \frac{4}{2} \times \frac{3}{1} = 10\]
∴ Required number of triangles =\[816 - 10 = 806\]
APPEARS IN
RELATED QUESTIONS
In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
From Goa to Bombay there are two roots; air, and sea. From Bombay to Delhi there are three routes; air, rail and road. From Goa to Delhi via Bombay, how many kinds of routes are there?
There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?
In how many ways can an examinee answer a set of ten true/false type questions?
There are 5 books on Mathematics and 6 books on Physics in a book shop. In how many ways can a students buy : (i) a Mathematics book and a Physics book (ii) either a Mathematics book or a Physics book?
A team consists of 6 boys and 4 girls and other has 5 boys and 3 girls. How many single matches can be arranged between the two teams when a boy plays against a boy and a girl plays against a girl?
How many three-digit numbers are there?
How many three-digit odd numbers are there?
In how many ways can six persons be seated in a row?
If nC10 = nC12, find 23Cn.
If n +2C8 : n − 2P4 = 57 : 16, find n.
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular professor is included.
How many different selections of 4 books can be made from 10 different books, if
two particular books are always selected;
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: at least 3 girls?
A parallelogram is cut by two sets of m lines parallel to its sides. Find the number of parallelograms thus formed.
How many different words, each containing 2 vowels and 3 consonants can be formed with 5 vowels and 17 consonants?
A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?
The number of ways in which a host lady can invite for a party of 8 out of 12 people of whom two do not want to attend the party together is
Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?
Find the value of 15C4
All the letters of the word ‘EAMCOT’ are arranged in different possible ways. The number of such arrangements in which no two vowels are adjacent to each other is ______.
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected from the lot.
There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated.
If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if two must be white and two red
In how many ways can a football team of 11 players be selected from 16 players? How many of them will exclude 2 particular players?
Everybody in a room shakes hands with everybody else. The total number of handshakes is 66. The total number of persons in the room is ______.
Three balls are drawn from a bag containing 5 red, 4 white and 3 black balls. The number of ways in which this can be done if at least 2 are red is ______.
If some or all of n objects are taken at a time, the number of combinations is 2n – 1.
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.
Number of selections of at least one letter from the letters of MATHEMATICS, is ______.
There are 12 balls numbered from 1 to 12. The number of ways in which they can be used to fill 8 places in a row so that the balls are with numbers in ascending or descending order is equal to ______.
The number of words, with or without meaning, that can be formed by taking 4 letters at a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike is ______.