English

How Many Different Selections of 4 Books Can Be Made from 10 Different Books, If Two Particular Books Are Never Selected? - Mathematics

Advertisements
Advertisements

Question

How many different selections of 4 books can be made from 10 different books, if two particular books are never selected?

Solution

Two particulars books are never selected from 10 books. So, 4 books need to be selected from 8 books.
Required number of ways if two particular books are never selected =\[{}^8 C_4 = \frac{8}{4} \times \frac{7}{3} \times \frac{6}{2} \times \frac{5}{1} = 70\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Combinations - Exercise 17.2 [Page 16]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 17 Combinations
Exercise 17.2 | Q 8.3 | Page 16

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.


Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.


Compute:

\[\frac{11! - 10!}{9!}\]

Prove that

\[\frac{1}{9!} + \frac{1}{10!} + \frac{1}{11!} = \frac{122}{11!}\]

From Goa to Bombay there are two roots; air, and sea. From Bombay to Delhi there are three routes; air, rail and road. From Goa to Delhi via Bombay, how many kinds of routes are there?


A team consists of 6 boys and 4 girls and other has 5 boys and 3 girls. How many single matches can be arranged between the two teams when a boy plays against a boy and a girl plays against a girl?


Since the  number has to be greater than 8000, the thousand's place can be filled by only two digits, i.e. 8 and 9.
Now, the hundred's place can be filled with the remaining 4 digits as the repetition of the digits is not allowed.
The ten's place can be filled with the remaining 3 digits.
The unit's place can be filled with the remaining 2 digits.
Total numbers that can be formed = `2xx4xx3xx2=48`


How many 9-digit numbers of different digits can be formed?


How many four digit different numbers, greater than 5000 can be formed with the digits 1, 2, 5, 9, 0 when repetition of digits is not allowed?


Evaluate the following:

35C35


From a class of 12 boys and 10 girls, 10 students are to be chosen for a competition; at least including 4 boys and 4 girls. The 2 girls who won the prizes last year should be included. In how many ways can the selection be made?


How many different selections of 4 books can be made from 10 different books, if
two particular books are always selected;


From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer


Find the number of diagonals of , 1.a hexagon


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has(iii) at least 3 girls? 


Find the number of (i) diagonals


In how many ways can one select a cricket team of eleven from 17 players in which only 5 persons can bowl if each cricket team of 11 must include exactly 4 bowlers?


Find the number of ways in which : (a) a selection


A business man hosts a dinner to 21 guests. He is having 2 round tables which can accommodate 15 and 6 persons each. In how many ways can he arrange the guests?


If nCr + nCr + 1 = n + 1Cx , then x =


5C1 + 5C2 5C3 + 5C4 +5C5 is equal to


In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?


There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection.


There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?


Four parallel lines intersect another set of five parallel lines. Find the number of distinct parallelograms that can be formed.


If α = mC2, then αCis equal to.


The value of `(""^9"C"_0 + ""^9"C"_1) + (""^9"C"_1 + ""^9"C"_2) + ... + (""^9"C"_8 + ""^9"C"_9)` is ______ 


In a small village, there are 87 families, of which 52 families have atmost 2 children. In a rural development programme 20 families are to be chosen for assistance, of which atleast 18 families must have at most 2 children. In how many ways can the choice be made?


In how many ways a committee consisting of 3 men and 2 women, can be chosen from 7 men and 5 women?


The number of ways in which a team of eleven players can be selected from 22 players always including 2 of them and excluding 4 of them is ______.


The number of ways in which we can choose a committee from four men and six women so that the committee includes at least two men and exactly twice as many women as men is ______.


Given 5 different green dyes, four different blue dyes and three different red dyes, the number of combinations of dyes which can be chosen taking at least one green and one blue dye is ______.


15C8 + 15C915C615C7 = ______.


There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:

C1 C2
(a) In how many ways committee: can be formed (i) 10C2 × 19C3 
(b) In how many ways a particular: professor is included (ii) 10C2 × 19C2
(c) In how many ways a particular: lecturer is included (iii) 9C1 × 20C3
(d) In how many ways a particular: lecturer is excluded (iv) 10C2 × 20C3

If number of arrangements of letters of the word "DHARAMSHALA" taken all at a time so that no two alike letters appear together is (4a.5b.6c.7d), (where a, b, c, d ∈ N), then a + b + c + d is equal to ______.


There are 12 persons seated in a line. Number of ways in which 3 persons can be selected such that atleast two of them are consecutive, is ______.


From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on the shelf so that the dictionary is always in the middle. Then, the number of such arrangements is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×