Advertisements
Advertisements
प्रश्न
How many different selections of 4 books can be made from 10 different books, if two particular books are never selected?
उत्तर
Two particulars books are never selected from 10 books. So, 4 books need to be selected from 8 books.
Required number of ways if two particular books are never selected =\[{}^8 C_4 = \frac{8}{4} \times \frac{7}{3} \times \frac{6}{2} \times \frac{5}{1} = 70\]
APPEARS IN
संबंधित प्रश्न
It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?
A coin is tossed five times and outcomes are recorded. How many possible outcomes are there?
A team consists of 6 boys and 4 girls and other has 5 boys and 3 girls. How many single matches can be arranged between the two teams when a boy plays against a boy and a girl plays against a girl?
How many three-digit numbers are there with no digit repeated?
How many different five-digit number licence plates can be made if
first digit cannot be zero and the repetition of digits is not allowed,
If α = mC2, then find the value of αC2.
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular student is excluded.
How many different selections of 4 books can be made from 10 different books, if
two particular books are always selected;
From 4 officers and 8 jawans in how many ways can 6 be chosen. to include at least one officer?
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
How many triangles can be obtained by joining 12 points, five of which are collinear?
Find the number of (ii) triangles
Determine the number of 5 cards combinations out of a deck of 52 cards if at least one of the 5 cards has to be a king?
A parallelogram is cut by two sets of m lines parallel to its sides. Find the number of parallelograms thus formed.
A business man hosts a dinner to 21 guests. He is having 2 round tables which can accommodate 15 and 6 persons each. In how many ways can he arrange the guests?
Write \[\sum^m_{r = 0} \ ^{n + r}{}{C}_r\] in the simplified form.
There are 12 points in a plane. The number of the straight lines joining any two of them when 3 of them are collinear, is
Given 11 points, of which 5 lie on one circle, other than these 5, no 4 lie on one circle. Then the number of circles that can be drawn so that each contains at least 3 of the given points is
Among 14 players, 5 are bowlers. In how many ways a team of 11 may be formed with at least 4 bowlers?
If n + 1C3 = 2 · nC2 , then n =
There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?
Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?
Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections.
Find the value of 15C4
Find the value of 15C4 + 15C5
A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?
The straight lines l1, l2 and l3 are parallel and lie in the same plane. A total numbers of m points are taken on l1; n points on l2, k points on l3. The maximum number of triangles formed with vertices at these points are ______.
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected from the lot.
A box contains two white, three black and four red balls. In how many ways can three balls be drawn from the box, if atleast one black ball is to be included in the draw
If nCr – 1 = 36, nCr = 84 and nCr + 1 = 126, then find rC2.
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to ______.
The number of ways in which a team of eleven players can be selected from 22 players always including 2 of them and excluding 4 of them is ______.
There are 12 points in a plane of which 5 points are collinear, then the number of lines obtained by joining these points in pairs is 12C2 – 5C2.
If number of arrangements of letters of the word "DHARAMSHALA" taken all at a time so that no two alike letters appear together is (4a.5b.6c.7d), (where a, b, c, d ∈ N), then a + b + c + d is equal to ______.
There are 12 persons seated in a line. Number of ways in which 3 persons can be selected such that atleast two of them are consecutive, is ______.
From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on the shelf so that the dictionary is always in the middle. Then, the number of such arrangements is ______.