Advertisements
Advertisements
प्रश्न
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least one boy and one girl
उत्तर
We have 4 girls and 7 boys and a team of 5 members is to be selected.
When at least one by and one girl are to be selected
Number of ways = 4C3 × 7C4 + 4C2 × 7C3 + 4C3 × 7C2 + 4C4 × 7C1
= `4 xx (7 xx 6 xx 5 xx 4)/(4 xx 3 xx 2 xx 1) + (4 xx 3)/(2 xx 1) xx (7 xx 6 xx 5)/(3 xx 2 xx 1) + 4 x (7 xx 6)/(2 xx 1) + 1 xx 7`
= 4 × 35 + 6 v 35 + 4 × 21 + 7
= 40 + 210 + 84 + 7
= 441 ways
Hence the required number of ways are 441 ways
APPEARS IN
संबंधित प्रश्न
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?
In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent the class in a function. In how many ways can the teacher make this selection?
A person wants to buy one fountain pen, one ball pen and one pencil from a stationery shop. If there are 10 fountain pen varieties, 12 ball pen varieties and 5 pencil varieties, in how many ways can he select these articles?
Given 7 flags of different colours, how many different signals can be generated if a signal requires the use of two flags, one below the other?
Serial numbers for an item produced in a factory are to be made using two letters followed by four digits (0 to 9). If the letters are to be taken from six letters of English alphabet without repetition and the digits are also not repeated in a serial number, how many serial numbers are possible?
Evaluate the following:
n + 1Cn
f 24Cx = 24C2x + 3, find x.
If nC4 , nC5 and nC6 are in A.P., then find n.
If 2nC3 : nC2 = 44 : 3, find n.
If α = mC2, then find the value of αC2.
From a group of 15 cricket players, a team of 11 players is to be chosen. In how many ways can this be done?
How many different boat parties of 8, consisting of 5 boys and 3 girls, can be made from 25 boys and 10 girls?
How many different selections of 4 books can be made from 10 different books, if two particular books are never selected?
A sports team of 11 students is to be constituted, choosing at least 5 from class XI and at least 5 from class XII. If there are 20 students in each of these classes, in how many ways can the teams be constituted?
Find the number of diagonals of (ii) a polygon of 16 sides.
A business man hosts a dinner to 21 guests. He is having 2 round tables which can accommodate 15 and 6 persons each. In how many ways can he arrange the guests?
The number of diagonals that can be drawn by joining the vertices of an octagon is
Four parallel lines intersect another set of five parallel lines. Find the number of distinct parallelograms that can be formed.
In how many ways a committee consisting of 3 men and 2 women, can be chosen from 7 men and 5 women?
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if two must be white and two red
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.
The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.
There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:
C1 | C2 |
(a) In how many ways committee: can be formed | (i) 10C2 × 19C3 |
(b) In how many ways a particular: professor is included | (ii) 10C2 × 19C2 |
(c) In how many ways a particular: lecturer is included | (iii) 9C1 × 20C3 |
(d) In how many ways a particular: lecturer is excluded | (iv) 10C2 × 20C3 |
Number of selections of at least one letter from the letters of MATHEMATICS, is ______.
A badminton club has 10 couples as members. They meet to organise a mixed double match. If each wife refers to p artner as well as oppose her husband in the match, then the number of different ways can the match off will be ______.
There are 12 persons seated in a line. Number of ways in which 3 persons can be selected such that atleast two of them are consecutive, is ______.