Advertisements
Advertisements
प्रश्न
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is
विकल्प
6
9
12
18
उत्तर
18
A parallelogram can be formed by choosing two parallel lines from the set of four parallel lines and two parallel lines from the set of three parallel lines.
Two parallel lines from the set of four parallel lines can be chosen in 4C2 ways and two parallel lines from the set of 3 parallel lines can be chosen in 3C2 ways.
∴ Number of parallelograms that can be formed =\[\ ^{4}{}{C}_2 \times \ ^{3}{}{C}_2 = \frac{4!}{2! 2!} \times \frac{3!}{2! 1!} = 6 \times 3 = 18\]
APPEARS IN
संबंधित प्रश्न
Determine n if `""^(2n)C_3 : ""^nC_3 = 12 : 1`
From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?
Compute:
(i)\[\frac{30!}{28!}\]
There are 6 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next three have 2 each?
From among the 36 teachers in a college, one principal, one vice-principal and the teacher-incharge are to be appointed. In how many ways can this be done?
How many three-digit numbers are there with no digit repeated?
How many different five-digit number licence plates can be made if
first digit cannot be zero and the repetition of digits is not allowed,
Since the number has to be greater than 8000, the thousand's place can be filled by only two digits, i.e. 8 and 9.
Now, the hundred's place can be filled with the remaining 4 digits as the repetition of the digits is not allowed.
The ten's place can be filled with the remaining 3 digits.
The unit's place can be filled with the remaining 2 digits.
Total numbers that can be formed = `2xx4xx3xx2=48`
How many 9-digit numbers of different digits can be formed?
How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?
Serial numbers for an item produced in a factory are to be made using two letters followed by four digits (0 to 9). If the letters are to be taken from six letters of English alphabet without repetition and the digits are also not repeated in a serial number, how many serial numbers are possible?
Evaluate the following:
If n +2C8 : n − 2P4 = 57 : 16, find n.
If 2nC3 : nC2 = 44 : 3, find n.
How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7, 11 (without repetition)?
A sports team of 11 students is to be constituted, choosing at least 5 from class XI and at least 5 from class XII. If there are 20 students in each of these classes, in how many ways can the teams be constituted?
A student has to answer 10 questions, choosing at least 4 from each of part A and part B. If there are 6 questions in part A and 7 in part B, in how many ways can the student choose 10 questions?
There are 10 points in a plane of which 4 are collinear. How many different straight lines can be drawn by joining these points.
Find the number of (ii) triangles
Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.
A parallelogram is cut by two sets of m lines parallel to its sides. Find the number of parallelograms thus formed.
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (i) straight lines
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (ii) triangles can be formed by joining them?
Find the number of ways in which : (b) an arrangement, of four letters can be made from the letters of the word 'PROPORTION'.
If 20Cr + 1 = 20Cr − 1 , then r is equal to
There are 12 points in a plane. The number of the straight lines joining any two of them when 3 of them are collinear, is
Among 14 players, 5 are bowlers. In how many ways a team of 11 may be formed with at least 4 bowlers?
A lady gives a dinner party for six guests. The number of ways in which they may be selected from among ten friends if two of the friends will not attend the party together is
Find the number of ways of drawing 9 balls from a bag that has 6 red balls, 5 green balls, and 7 blue balls so that 3 balls of every colour are drawn.
There are 8 doctors and 4 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team.
Answer the following:
A question paper has 6 questions. How many ways does a student have to answer if he wants to solve at least one question?
How many committee of five persons with a chairperson can be selected from 12 persons.
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if two must be white and two red
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.
To fill 12 vacancies there are 25 candidates of which 5 are from scheduled castes. If 3 of the vacancies are reserved for scheduled caste candidates while the rest are open to all, the number of ways in which the selection can be made is 5C3 × 20C9.
There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is ______.
All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.
There are ten boys B1, B2, ...., B10 and five girls G1, G2, ...., G5 in a class. Then the number of ways of forming a group consisting of three boys and three girls, if both B1 and B2 together should not be the members of a group is ______.