Advertisements
Advertisements
प्रश्न
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has(iii) at least 3 girls?
उत्तर
If the team has at least 3 girls, then the number of ways of selecting 5 members =\[{}^4 C_3 \times^7 C_2 +^4 C_4 \times^7 C_1 = 84 + 7 = 91\]
APPEARS IN
संबंधित प्रश्न
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
Compute:
L.C.M. (6!, 7!, 8!)
In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent the class in a function. In how many ways can the teacher make this selection?
There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?
In how many ways can an examinee answer a set of ten true/false type questions?
A letter lock consists of three rings each marked with 10 different letters. In how many ways it is possible to make an unsuccessful attempt to open the lock?
There are 5 books on Mathematics and 6 books on Physics in a book shop. In how many ways can a students buy : (i) a Mathematics book and a Physics book (ii) either a Mathematics book or a Physics book?
Evaluate the following:
14C3
If 15C3r = 15Cr + 3, find r.
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
exclude 2 particular players?
How many different selections of 4 books can be made from 10 different books, if
two particular books are always selected;
How many different selections of 4 books can be made from 10 different books, if two particular books are never selected?
How many triangles can be obtained by joining 12 points, five of which are collinear?
In how many ways can a committee of 5 persons be formed out of 6 men and 4 women when at least one woman has to be necessarily selected?
In a village, there are 87 families of which 52 families have at most 2 children. In a rural development programme, 20 families are to be helped chosen for assistance, of which at least 18 families must have at most 2 children. In how many ways can the choice be made?
We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?
In how many ways can one select a cricket team of eleven from 17 players in which only 5 persons can bowl if each cricket team of 11 must include exactly 4 bowlers?
A parallelogram is cut by two sets of m lines parallel to its sides. Find the number of parallelograms thus formed.
If 20Cr = 20Cr + 4 , then rC3 is equal to
If mC1 = nC2 , then
Three persons enter a railway compartment. If there are 5 seats vacant, in how many ways can they take these seats?
There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two of them is
There are 13 players of cricket, out of which 4 are bowlers. In how many ways a team of eleven be selected from them so as to include at least two bowlers?
Given 11 points, of which 5 lie on one circle, other than these 5, no 4 lie on one circle. Then the number of circles that can be drawn so that each contains at least 3 of the given points is
If n + 1C3 = 2 · nC2 , then n =
A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?
The straight lines l1, l2 and l3 are parallel and lie in the same plane. A total numbers of m points are taken on l1; n points on l2, k points on l3. The maximum number of triangles formed with vertices at these points are ______.
How many committee of five persons with a chairperson can be selected from 12 persons.
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.
If nC12 = nC8, then n is equal to ______.
The number of ways in which a team of eleven players can be selected from 22 players always including 2 of them and excluding 4 of them is ______.
15C8 + 15C9 – 15C6 – 15C7 = ______.
There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:
C1 | C2 |
(a) One book of each subject; | (i) 3968 |
(b) At least one book of each subject: | (ii) 60 |
(c) At least one book of English: | (iii) 3255 |
The number of numbers between 2,000 and 5,000 that can be formed with the digits 0, 1, 2, 3, 4, (repetition of digits is not allowed) and are multiple of 3 is?