Advertisements
Advertisements
प्रश्न
A customer forgets a four-digits code for an Automatic Teller Machine (ATM) in a bank. However, he remembers that this code consists of digits 3, 5, 6 and 9. Find the largest possible number of trials necessary to obtain the correct code.
उत्तर
Assuming that the code of an ATM has all distinct digits.
Number of ways for selecting the first digit = 4
Number of ways for selecting the second digit = 3
Number of ways for selecting the third digit = 2
Number of ways for selecting the fourth digit = 1
Total number of possible codes for the ATM =`4xx3xx2xx1=24`
APPEARS IN
संबंधित प्रश्न
Evaluate 4! – 3!
How many words, with or without meaning, can be formed using all the letters of the word EQUATION, using each letter exactly once?
Which of the following are true:
(2 × 3)! = 2! × 3!
How many 5-digit telephone numbers can be constructed using the digits 0 to 9. If each number starts with 67 and no digit appears more than once?
Find the total number of ways in which 20 balls can be put into 5 boxes so that first box contains just one ball ?
In how many ways can 4 prizes be distributed among 5 students, when
(i) no student gets more than one prize?
(ii) a student may get any number of prizes?
(iii) no student gets all the prizes?
Evaluate each of the following:
8P3
In how many ways can 4 letters be posted in 5 letter boxes?
Write the number of 5 digit numbers that can be formed using digits 0, 1 and 2 ?
In how many ways 4 women draw water from 4 taps, if no tap remains unused?
Write the number of words that can be formed out of the letters of the word 'COMMITTEE' ?
The number of five-digit telephone numbers having at least one of their digits repeated is
The number of words that can be formed out of the letters of the word "ARTICLE" so that vowels occupy even places is
How many numbers greater than 10 lacs be formed from 2, 3, 0, 3, 4, 2, 3 ?
The number of ways in which 6 men can be arranged in a row so that three particular men are consecutive, is
If k + 5Pk + 1 =\[\frac{11 (k - 1)}{2}\]. k + 3Pk , then the values of k are
English alphabet has 11 symmetric letters that appear same when looked at in a mirror. These letters are A, H, I, M, O, T, U, V, W, X and Y. How many symmetric three letters passwords can be formed using these letters?
How many five digits telephone numbers can be constructed using the digits 0 to 9 If each number starts with 67 with no digit appears more than once?
How many 6-digit telephone numbers can be constructed with the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each numbers starts with 35 and no digit appear more than once?
Evaluate the following.
`(3! xx 0! + 0!)/(2!)`
The total number of 9 digit number which has all different digit is:
The number of ways to arrange the letters of the word “CHEESE”:
If `""^(("n" – 1))"P"_3 : ""^"n""P"_4` = 1 : 10 find n
A test consists of 10 multiple choice questions. In how many ways can the test be answered if question number n has n + 1 choices?
A student appears in an objective test which contain 5 multiple choice questions. Each question has four choices out of which one correct answer.
How will the answer change if each question may have more than one correct answers?
8 women and 6 men are standing in a line. How many arrangements are possible if any individual can stand in any position?
A coin is tossed 8 times, how many different sequences of heads and tails are possible?
How many strings are there using the letters of the word INTERMEDIATE, if all the vowels are together
Choose the correct alternative:
The product of r consecutive positive integers is divisible b
Choose the correct alternative:
If Pr stands for rPr then the sum of the series 1 + P1 + 2P2 + 3P3 + · · · + nPn is
Find the number of permutations of n different things taken r at a time such that two specific things occur together.
A five-digit number divisible by 3 is to be formed using the numbers 0, 1, 2, 3, 4 and 5 without repetitions. The total number of ways this can be done is ______.
The number of 5-digit telephone numbers having atleast one of their digits repeated is ______.
The number of words which can be formed out of the letters of the word ARTICLE, so that vowels occupy the even place is ______.
Let b1, b2, b3, b4 be a 4-element permutation with bi ∈ {1, 2, 3, .......,100} for 1 ≤ i ≤ 4 and bi ≠ bj for i ≠ j, such that either b1, b2, b3 are consecutive integers or b2, b3, b4 are consecutive integers. Then the number of such permutations b1, b2, b3, b4 is equal to ______.
If 1P1 + 2. 2p2 + 3. 3p3 + ....... 15. 15P15 = qPr – s, 0 ≤ s ≤ 1, then q+sCr–s is equal to ______.