Advertisements
Advertisements
प्रश्न
How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?
उत्तर
There are 8 letters in the word TRIANGLE.
∴ Number of 8 letter words = Number of arrangements of 8 letters, taken 8 at a time
= 8P8 = 8!
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
3 · 6 · 9 · 12 · 15 · 18
If (n + 2)! = 60 [(n − 1)!], find n.
Prove that:
If P (n, 5) = 20. P(n, 3), find n ?
If P(11, r) = P (12, r − 1) find r.
Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (n, n) = P (n + 1, n + 1) − 1.
Four letters E, K, S and V, one in each, were purchased from a plastic warehouse. How many ordered pairs of letters, to be used as initials, can be formed from them?
Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.
How many three-digit numbers are there, with distinct digits, with each digit odd?
How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?
How many three-digit numbers are there, with no digit repeated?
How many 6-digit telephone numbers can be constructed with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels never come together?
How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the letter G always occupies the first place?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the vowels always occupy even places?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all vowels come together?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all consonants come together?
In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?
m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.
In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?
How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?
How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?
How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?
The letters of the word 'SURITI' are written in all possible orders and these words are written out as in a dictionary. Find the rank of the word 'SURITI'.
If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.
For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1
Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?
Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
Find the number of permutations of n different things taken r at a time such that two specified things occur together?
Write the number of diagonals of an n-sided polygon.
Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.
Write the value of\[\sum^6_{r = 1} \ ^{56 - r}{}{C}_3 + \ ^ {50}{}{C}_4\]
Write the total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants.