मराठी

How Many Permutations Can Be Formed by the Letters of the Word, 'Vowels', Whenall Consonants Come Together? - Mathematics

Advertisements
Advertisements

प्रश्न

How many permutations can be formed by the letters of the word, 'VOWELS', when

all consonants come together?

उत्तर

The word VOWELS consists of 4 consonants.
If we keep all the consonants together, we have to consider them as a single entity.
Now, we are left with the 2 vowels and all the consonants that are taken together as a single entity.
This gives us a total of 3 entities that can be arranged in 3! ways.
It is also to be considered that the 4 consonants can be arranged in 4! ways amongst themselves.

By fundamental principle of counting:
∴ Total number of arrangements = 3!\[\times\]4! = 144

shaalaa.com
Factorial N (N!) Permutations and Combinations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Permutations - Exercise 16.4 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 16 Permutations
Exercise 16.4 | Q 7.5 | पृष्ठ ३७

संबंधित प्रश्‍न

Prove that: n! (n + 2) = n! + (n + 1)!


If P (9, r) = 3024, find r.


If P(11, r) = P (12, r − 1) find r.


If P (n, 4) = 12 . P (n, 2), find n.


Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (nn) = P (n + 1, n + 1) − 1.


In how many ways can five children stand in a queue?


Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.


How many three-digit numbers are there, with distinct digits, with each digit odd?


How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?


How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?


Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?


All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels occupy only the odd places?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letters P and I respectively occupy first and last place?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels are always together?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels always occupy even places?


How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with E?


How many permutations can be formed by the letters of the word, 'VOWELS', when

each word begins with O and ends with L?


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time?


How many three letter words can be made using the letters of the word 'ORIENTAL'?


Find the number of words formed by permuting all the letters of the following words:
INDEPENDENCE


Find the number of words formed by permuting all the letters of the following words:
INTERMEDIATE


Find the number of words formed by permuting all the letters of the following words:

PAKISTAN


Find the number of words formed by permuting all the letters of the following words:
SERIES


How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?


How many words can be formed by arranging the letters of the word 'MUMBAI' so that all M's come together?


How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?


There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?


A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?


Find the total number of permutations of the letters of the word 'INSTITUTE'.


If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.


If the permutations of a, b, c, d, e taken all together be written down in alphabetical order as in dictionary and numbered, find the rank of the permutation debac ?


In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:

the relative order of vowels and consonants do not alter?


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n}{}{C}_{r - 1}} = \frac{n - r + 1}{r}\]

How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?


How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?


Find the number of permutations of n different things taken r at a time such that two specified things occur together?


Write the number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×