Advertisements
Advertisements
प्रश्न
If P (9, r) = 3024, find r.
उत्तर
P (9, r) = 3024
\[ \Rightarrow \frac{9!}{\left( 9 - r \right)!} = 9 \times 8 \times 7 \times 6\]
\[ \Rightarrow \frac{9!}{\left( 9 - r \right)!} = \frac{9 \times 8 \times 7 \times 6 \times 5!}{5!}\]
\[ \Rightarrow \frac{9!}{\left( 9 - r \right)!} = \frac{9!}{5!}\]
\[ \Rightarrow \left( 9 - r \right)! = 5!\]
\[ \Rightarrow 9 - r = 5\]
\[ \Rightarrow r = 4\]
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
5 · 6 · 7 · 8 · 9 · 10
Convert the following products into factorials:
(n + 1) (n + 2) (n + 3) ... (2n)
Prove that: n! (n + 2) = n! + (n + 1)!
If (n + 2)! = 60 [(n − 1)!], find n.
If (n + 3)! = 56 [(n + 1)!], find n.
Prove that:
If nP4 = 360, find the value of n.
If P (n, 4) = 12 . P (n, 2), find n.
If P (n − 1, 3) : P (n, 4) = 1 : 9, find n.
If P (n, 5) : P (n, 3) = 2 : 1, find n.
Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (n, n) = P (n + 1, n + 1) − 1.
From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?
Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels come together?
How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all vowels come together?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.
Find the number of words formed by permuting all the letters of the following words:
RUSSIA
Find the number of words formed by permuting all the letters of the following words:
EXERCISES
Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE
In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?
How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?
How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?
In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?
How many different numbers, greater than 50000 can be formed with the digits 0, 1, 1, 5, 9.
A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?
Find the total number of permutations of the letters of the word 'INSTITUTE'.
If the permutations of a, b, c, d, e taken all together be written down in alphabetical order as in dictionary and numbered, find the rank of the permutation debac ?
The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?
Prove that the product of 2n consecutive negative integers is divisible by (2n)!
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if (i) 4 letters are used at a time
Write the maximum number of points of intersection of 8 straight lines in a plane.
Write the number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines.
Write the number of ways in which 12 boys may be divided into three groups of 4 boys each.