मराठी

Find the Total Number of Permutations of the Letters of the Word 'Institute'. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the total number of permutations of the letters of the word 'INSTITUTE'.

उत्तर

The word 'INSTITUTE' consists of 9 letters including two Is and three Ts.
Total number of words that can be formed of the word INSTITUTE = Number of arrangements of 9 things of which 2 are similar to the first kind and 3 are similar to the second kind =\[\frac{9!}{2!3!}\]

shaalaa.com
Factorial N (N!) Permutations and Combinations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Permutations - Exercise 16.5 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 16 Permutations
Exercise 16.5 | Q 21 | पृष्ठ ४३

संबंधित प्रश्‍न

Convert the following products into factorials:

5 · 6 · 7 · 8 · 9 · 10


Prove that: n! (n + 2) = n! + (n + 1)!


Prove that: 

\[\frac{n!}{(n - r)!}\] = n (n − 1) (n − 2) ... (n − (r − 1))

Prove that:

\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]


If P (5, r) = P (6, r − 1), find r ?


If 5 P(4, n) = 6. P (5, n − 1), find n ?


If nP4 = 360, find the value of n.


If P(11, r) = P (12, r − 1) find r.


If P (n − 1, 3) : P (n, 4) = 1 : 9, find n.


If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.


If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.


Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.


In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?


If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of  permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels come together?

 


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letter G always occupies the first place?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letters P and I respectively occupy first and last place?


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time?


Find the number of words formed by permuting all the letters of the following words:
SERIES


In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?


How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?


How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?


In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?


How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?


There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?


A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?


In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?


How many numbers greater than 1000000 can be formed by using the digits 1, 2, 0, 2, 4, 2, 4?


If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.


In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:

the relative order of vowels and consonants do not alter?


Prove that the product of 2n consecutive negative integers is divisible by (2n)!


Evaluate

\[^ {20}{}{C}_5 + \sum^5_{r = 2} {}^{25 - r} C_4\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1


There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.


How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if  all letters are used at a time 


How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?


Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×