Advertisements
Advertisements
प्रश्न
How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?
उत्तर
The word UNIVERSITY consists of 10 letters that include four vowels of which two are same.
Thus, the vowels can be arranged amongst themselves in
By fundamental principle of counting, we get,
Number of words = 7!\[\times\]\[\frac{4!}{2!}\] = 60480
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
5 · 6 · 7 · 8 · 9 · 10
Convert the following products into factorials:
1 · 3 · 5 · 7 · 9 ... (2n − 1)
If \[\frac{(2n)!}{3! (2n - 3)!}\] and \[\frac{n!}{2! (n - 2)!}\] are in the ratio 44 : 3, find n.
If P (5, r) = P (6, r − 1), find r ?
If 5 P(4, n) = 6. P (5, n − 1), find n ?
If P (n, 5) = 20. P(n, 3), find n ?
If nP4 = 360, find the value of n.
If P (n − 1, 3) : P (n, 4) = 1 : 9, find n.
If P (n, 5) : P (n, 3) = 2 : 1, find n.
There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?
All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.
How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the letters P and I respectively occupy first and last place?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the vowels always occupy even places?
How many permutations can be formed by the letters of the word, 'VOWELS', when
there is no restriction on letters?
How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.
Find the number of words formed by permuting all the letters of the following words:
ARRANGE
Find the number of words formed by permuting all the letters of the following words:
PAKISTAN
Find the number of words formed by permuting all the letters of the following words:
EXERCISES
How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?
How many different numbers, greater than 50000 can be formed with the digits 0, 1, 1, 5, 9.
How many words can be formed from the letters of the word 'SERIES' which start with S and end with S?
How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?
Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.
How many numbers greater than 1000000 can be formed by using the digits 1, 2, 0, 2, 4, 2, 4?
In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?
If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.
If the letters of the word 'MOTHER' are written in all possible orders and these words are written out as in a dictionary, find the rank of the word 'MOTHER'.
Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.
In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?
Prove that the product of 2n consecutive negative integers is divisible by (2n)!
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
nCr + 2 · nCr − 1 + nCr − 2 = n + 2Cr.
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if (i) 4 letters are used at a time
If 35Cn +7 = 35C4n − 2 , then write the values of n.
Write the maximum number of points of intersection of 8 straight lines in a plane.
Write the number of ways in which 12 boys may be divided into three groups of 4 boys each.