Advertisements
Advertisements
प्रश्न
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.
उत्तर
Number of words taking all the letters together = 6! = 6 x 5 x 4 x 3 x 2 x 1 = 720.
APPEARS IN
संबंधित प्रश्न
If nP4 = 360, find the value of n.
How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?
There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?
How many three-digit numbers are there, with no digit repeated?
In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?
How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?
All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels occupy only the odd places?
How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the vowels are always together?
How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with O and ends with L?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all vowels come together?
In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?
Find the number of words formed by permuting all the letters of the following words:
INDEPENDENCE
Find the number of words formed by permuting all the letters of the following words:
ARRANGE
Find the number of words formed by permuting all the letters of the following words:
RUSSIA
How many number of four digits can be formed with the digits 1, 3, 3, 0?
How many words can be formed from the letters of the word 'SERIES' which start with S and end with S?
How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?
Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.
How many numbers greater than 1000000 can be formed by using the digits 1, 2, 0, 2, 4, 2, 4?
In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?
Find the total number of permutations of the letters of the word 'INSTITUTE'.
If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.
If the permutations of a, b, c, d, e taken all together be written down in alphabetical order as in dictionary and numbered, find the rank of the permutation debac ?
Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.
In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?
The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?
Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?
Write the maximum number of points of intersection of 8 straight lines in a plane.
Write the total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants.