हिंदी

If the Permutations of A, B, C, D, E Taken All Together Be Written Down in Alphabetical Order as in Dictionary and Numbered, Find the Rank of the Permutation Debac ? - Mathematics

Advertisements
Advertisements

प्रश्न

If the permutations of a, b, c, d, e taken all together be written down in alphabetical order as in dictionary and numbered, find the rank of the permutation debac ?

उत्तर

In a dictionary, the words are listed and ranked in alphabetical order. In the given problem, we need to find the rank of the word 'debac'.
For finding the number of words starting with a, we have to find the number of arrangements of the remaining 4 letters.
Number of such arrangements = 4!
For finding the number of words starting with b, we have to find the number of arrangements of the remaining 4 letters.
Number of such arrangements = 4!
For finding the number of words starting with c, we have to find the number of arrangements of the remaining 4 letters.
Number of such arrangements = 4!
For finding the number of words starting with d, fixing the next letter as a, we have to find the number of arrangements of remaining 3 letters.
Number of such arrangements = 3!
For finding the number of words starting with d, fixing the next letter as b, we have to find the number of arrangements of remaining 3 letters.
Number of such arrangements = 3!
For finding the number of words starting with d, fixing the next letter as c, we have to find the number of arrangements of remaining 3 letters.
Number of such arrangements = 3!
For finding the number of words starting with d, fixing the next letter as e:
First word- deabc
Second word- deacb
Third word- debac
Number of words after which we reach the word debac = 4!+4!+4!+3!+3!+3!+1+1+1 = 93

shaalaa.com
Factorial N (N!) Permutations and Combinations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Permutations - Exercise 16.5 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 16 Permutations
Exercise 16.5 | Q 25 | पृष्ठ ४३

संबंधित प्रश्न

Convert the following products into factorials: 

3 · 6 · 9 · 12 · 15 · 18


Convert the following products into factorials:

1 · 3 · 5 · 7 · 9 ... (2n − 1)


Prove that:

\[\frac{(2n + 1)!}{n!}\] = 2n [1 · 3 · 5 ... (2n − 1) (2n + 1)]

If 5 P(4, n) = 6. P (5, n − 1), find n ?


If P (n, 5) = 20. P(n, 3), find n ?


If P (9, r) = 3024, find r.


If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.


If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.


In how many ways can five children stand in a queue?


Four letters E, K, S and V, one in each, were purchased from a plastic warehouse. How many ordered pairs of letters, to be used as initials, can be formed from them?


How many 6-digit telephone numbers can be constructed with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?


In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?


If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of  permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.


Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels come together?

 


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels occupy only the odd places?


How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?


How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time?


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.


Find the number of words formed by permuting all the letters of the following words:

RUSSIA


Find the number of words formed by permuting all the letters of the following words:
EXERCISES


How many words can be formed by arranging the letters of the word 'MUMBAI' so that all M's come together?


How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?


In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?


How many words can be formed from the letters of the word 'SERIES' which start with S and end with S?


Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.


Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.


In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?


For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1 


There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.


How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?


Find the number of permutations of n distinct things taken together, in which 3 particular things must occur together.


Write the number of ways in which 5 red and 4 white balls can be drawn from a bag containing 10 red and 8 white balls.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×