Advertisements
Advertisements
प्रश्न
Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.
उत्तर
Six '+' signs can be arranged in a row in\[\frac{6!}{6!}\] = 1 way
Now, we are left with seven places in which four different things can be arranged in 7P4ways.
Since all the four '- ' signs are identical, four '- ' signs can be arranged in\[{{7}{}{P}_4}{4!}\]ways, i.e. 35 ways.
Number of ways = 1\[\times\]35 = 35
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
5 · 6 · 7 · 8 · 9 · 10
If P (9, r) = 3024, find r.
If P (n, 5) : P (n, 3) = 2 : 1, find n.
Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (n, n) = P (n + 1, n + 1) − 1.
In how many ways can five children stand in a queue?
Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?
How many three-digit numbers are there, with distinct digits, with each digit odd?
How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?
There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?
How many three-digit numbers are there, with no digit repeated?
In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?
If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?
In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels come together?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels never come together?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels occupy only the odd places?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the vowels always occupy even places?
How many permutations can be formed by the letters of the word, 'VOWELS', when
there is no restriction on letters?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all consonants come together?
How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?
In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time?
Find the number of words formed by permuting all the letters of the following words:
ARRANGE
Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE
A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?
The letters of the word 'SURITI' are written in all possible orders and these words are written out as in a dictionary. Find the rank of the word 'SURITI'.
If the permutations of a, b, c, d, e taken all together be written down in alphabetical order as in dictionary and numbered, find the rank of the permutation debac ?
Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
nCr + 2 · nCr − 1 + nCr − 2 = n + 2Cr.
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?
Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.
Write the value of\[\sum^6_{r = 1} \ ^{56 - r}{}{C}_3 + \ ^ {50}{}{C}_4\]
Write the total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants.