Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_0^(pi/2) ("d"x)/(5 + 4sin^2x)`
योग
उत्तर
Let I = `int_0^(pi/2) ("d"x)/(5 + 4sin^2x)`
Dividing both Numerator and Denominator by cos2x
= `int_0^(pi/2) (1/(cos^2x))/(5/(cos^2x)+ (4sin^2x)/(cos^2x)) "d"x`
= `int_0^(pi/2) (sec^2x)/(5sec^2x + 4tan^2x) d"x`
= `int_0^(pi/2) (sc^2x)/(5(1 tan^2x) + 4tan^2x)`
= `int_0^(pi/2) (sec^2 x)/(5 + 9tan^2x) "dx` ..........(1)
Considerr, t = tan x ........(2)
Diferentite with rect t 'x'
dt = sec2x dx ..........(3)
x | 0 | `pi/2` |
t | 0 | `oo` |
Substitute (2) and (3) in (1), we get
(1) ⇒ = `int_0^oo "dt"/(5 + 9"t"^2)`
= `1/9 int_0^oo "dt"/(5/9+ "t"^2)`
= `1/9 int_0^oo "dt"/((sqrt(5)/3)^2 + "t"^2)`
= `1/9[1/(sqrt(5)/3) tan^-1 "t"/(sqrt5/3)]_0^oo`
= `1/9 [3/sqrt(5) (pi/2) - 0]`
`1/9[(3pi)/(2sqrt(5))]`
`pi/(6sqrt5)`
shaalaa.com
Improper Integrals
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?