Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_0^(pi/2) ("d"x)/(1 + 5cos^2x)`
योग
उत्तर
Let I = `int_0^(pi/2) ("d"x)/(1 + 5cos^2x)`
Dividing both Numerator and Denominator by cos2x.
= `int_0^(pi/2) (1/(cos^2x))/(1/(cos^2x) + 5) "d"x`
= `int_0^(pi/2) (sec^2x)/(sec^2x + 5) "d"x`
= `int_0^(pi/2) (sec^2x)/(1 + tan^2x + 5) "d"x`
= `int_0^(pi/2) (sec^2x)/(tan^2x+ 6) "d"x` ........(1)
Consider, t = tan x ........(2)
DIfferentiate with respect to 'x'
dt = sec2x dx .......(3)
x | 0 | `pi/2` |
t | 0 | `oo` |
Substitute (2) and (3) in (1), we get
(1) ⇒ = `int_0^oo "dt"/("t"^2 + 6)`
= `int_0^oo "dt"/("t"^2 + (sqrt(6))^2` ........`{{:(int ("d"x)/("a"^2+ x^2) = 1/"a"tan^-1 (x/"a")), (tan-1 (oo) = pi/2):}}`
= `[1/sqrt(6) tan^-1 "t"/sqrt(6)]_0^oo`
= `1/sqrt(6) tan^-1 (oo) - 0`
= `1/sqrt(6)(pi/2)`
= `pi/(2sqrt(6))`
shaalaa.com
Improper Integrals
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?