हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Evaluate the following: d∫0π2dx1+5cos2x - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int_0^(pi/2) ("d"x)/(1 + 5cos^2x)`

योग

उत्तर

Let I = `int_0^(pi/2) ("d"x)/(1 + 5cos^2x)`

Dividing both Numerator and Denominator by cos2x.

= `int_0^(pi/2) (1/(cos^2x))/(1/(cos^2x) + 5)  "d"x`

= `int_0^(pi/2) (sec^2x)/(sec^2x + 5)  "d"x`

= `int_0^(pi/2) (sec^2x)/(1 + tan^2x + 5)  "d"x`

= `int_0^(pi/2) (sec^2x)/(tan^2x+ 6)  "d"x`  ........(1)

Consider, t = tan x   ........(2)

DIfferentiate with respect to 'x'

dt = sec2x dx .......(3)

x 0 `pi/2`
t 0 `oo`

Substitute (2) and (3) in (1), we get

(1) ⇒ = `int_0^oo "dt"/("t"^2 + 6)`

= `int_0^oo "dt"/("t"^2 + (sqrt(6))^2`  ........`{{:(int ("d"x)/("a"^2+ x^2) = 1/"a"tan^-1 (x/"a")), (tan-1 (oo) = pi/2):}}`

= `[1/sqrt(6) tan^-1  "t"/sqrt(6)]_0^oo`

= `1/sqrt(6) tan^-1 (oo) - 0`

= `1/sqrt(6)(pi/2)`

= `pi/(2sqrt(6))`

shaalaa.com
Improper Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Applications of Integration - Exercise 9.5 [पृष्ठ ११७]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 9 Applications of Integration
Exercise 9.5 | Q 1. (i) | पृष्ठ ११७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×