Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_0^(pi/2) x^2 cos 2x "d"x`
योग
उत्तर
I = `int_0^(pi/2) x^2 cos 2x "d"x`
u = x2, v = cos2x
u' = 2x, v1 = `(sin 2x)/2`
u'' = 2, v2 = `- (cos 2x)/4`
v3 = `- (sin 2x)/8`
I = `[x^2 (sin 2x)/2 + 2x (cos2x)/4 - 2 (sin 2x)/8]_0^(pi/2)`
= `[0 - pi/4 - 0]`
= `- pi/4`
`int_0^(pi/2) x^2 cos 2x "d"x = - pi/4`
shaalaa.com
Bernoulli’s Formula
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`int_0^1 x^3"e"^(-2x) "d"x`
Evaluate the following:
`int_0^1 (sin(3tan^-1 x)tan^-1 x)/(1 + x^2) "d"x`
Evaluate the following:
`int_0^(1/sqrt(2)) ("e"^(sin^-1x) sin^-1 x)/sqrt(1 - x^2) "d"x`
Choose the correct alternative:
If `f(x) = int_0^x "t" cos "t" "dt"`, then `("d"f)/("d"x)` =