हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Evaluate the following: ed∫01x3e-2x dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int_0^1 x^3"e"^(-2x)  "d"x`

योग

उत्तर

Bernoulli’s formula,

`int "uv"  "d"x` = uv1 – u1v2 + u2v3 – u3v4 + ….

u = x3, v = e–2x

u1 = 3x2, v1 = `("e"^(-2x))/(-2)`

u2 = 6, v2 = `("e"^(-2x))/4`

u3 = 6, v3 = `("e"^(-2x))/(-8)`

u4 = 0, v3 = `("e"^(- 2x))/16`

`int_0^1 x^3 "e"^(-2x)  "d"x = [(x^3"e"^(-2))/(-2) - (3x^2"e"^(-2x))/4 + (6x "e"^(-2x))/(-8) - (6"e"^(-2x))/16]_0^1`

`int_0^1 x^3 "e"^(-2x)  "d"x = "e"^(-2x)[x^3/(- 2) - (3x^2)/4 + (6x)/(-8) -6/16]_0^1`

= `"e"^(-2)[- 1/2 - 6/4 - 3/8] - "e"^0 (- 3/8)`

= `"e"^(-2) ((-4 - 12 - 3)/8) + 3/8`

= `3/8 - 19/8 "e"^(-2)`

∴ `int_0^1 x^3"e"^(-2x)  "d"x = 3/8 - 19/(8"e"^2)`

shaalaa.com
Bernoulli’s Formula
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Applications of Integration - Exercise 9.4 [पृष्ठ ११५]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 9 Applications of Integration
Exercise 9.4 | Q 1 | पृष्ठ ११५
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×