Advertisements
Advertisements
प्रश्न
Evaluate the following integrals using properties of integration:
`int_0^pi x[sin^2(sin x) cos^2 (cos x)] "d"x`
उत्तर
Let I = `int_0^pi x[sin^2(sin x) cos^2 (cos x)] "d"x`
fx) = sin2(sin x) + cos2(cos x)
f(π – x) = sin2(sin π – x)) + cos2(cos(π – x))
= sin2(sin x) + cos2(cos x)
f(x) = f(π – x)
`int_0^"a" x f(x) "d"x = "a"/ int_0^"a" f(x "d"x`
If `"f"("a" - x) = "f"(x)`
∴ I = `pi/2 int_0^pi [sin^2(sin x) + cos^2(cos x)] "d"x`
If `"f"(2"a" - x) = "f"(x)`, then `int_0^(2"a") f(x) "d"x = 2int_0^"a" f(x) "d"x`
I = `pi/2 xx 2 int_0^(pi/2) [sin^2(sin x) + cos^2 (cos x)] "d"x` ........(1)
I = `pi int_0^(pi/2) [sin^2(sin(pi/2 - x) + cos^2(cos(pi/2 - ))] "d"x`
∵ `int_0^"a" f(x) "d"x = int_0^"a" f("a" - x) "d"x`
= `pi int_0^(pi/2) [sin^2 (cos x ) + cos^2 (sin x)] "d"x` ........(2)
Add (1) + (2)
2I = `pi int_0^(pi/2) [sin^2 (sin x) + cos^2 (cos x) + sin^2(cos x) + cos^2 (sin x)] "d"x`
= `pi int_0^(pi/2) 2 "d"x`
= `pi [2x]_0^(pi/2)`
= `2pi xx pi/2`
= `pi^2`
2I = `pi^2`
I = `pi^2/2`
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
`int_3^4 (d"x)/(x^2 - 4)`
Evaluate the following definite integrals:
`int_(-1)^1 ("d"x)/(x^2 + 2x + 5)`
Evaluate the following definite integrals:
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x`
Evaluate the following definite integrals:
`int_0^1 (1 - x^2)/(1 + x^2)^2 "d"x`
Evaluate the following integrals using properties of integration:
`int_(-5)^5 x cos(("e"^x - 1)/("e"^x + 1)) "d"x`
Evaluate the following integrals using properties of integration:
`int_(- pi/2)^(pi/2) (x^5 + x cos x + tan^3 x + 1) "d"x`
Evaluate the following integrals using properties of integration:
`int_(- pi/4)^(pi/4) sin^2x "d"x`
Evaluate the following integrals using properties of integration:
`int_0^(2pi) x log((3 + cosx)/(3 - cosx)) "d"x`
Evaluate the following integrals using properties of integration:
`int_0^pi sin^4 x cos^3 x "d"x`
Evaluate the following integrals using properties of integration:
`int_0^1 |5x - 3| "d"x`
Evaluate the following integrals using properties of integration:
`int_0^(sin^2x) sin^-1 sqrt("t") "dt" + int_0^(cos^2x) cos^-1 sqrt("t") "dt"`
Evaluate the following integrals using properties of integration:
`int_(pi/8)^((3pi)/8) 1/(1 + sqrt(tan x)) "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) sin^2x cos x "d"x` is
Choose the correct alternative:
The value of `int_(-4)^4 [tan^-1 ((x^2)/(x^4 + 1)) + tan^-1 ((x^4 + 1)/x^2)] "d"x` is
Choose the correct alternative:
The value of `int_(- pi/4)^(pi/4) ((2x^7 - 3x^5 + 7x^3 - x + 1)/(cos^2x)) "d"x` is
Choose the correct alternative:
The value of `int_0^pi ("d"x)/(1 + 5^(cosx))` is