Advertisements
Advertisements
प्रश्न
Evaluate the following integrals using properties of integration:
`int_0^(2pi) x log((3 + cosx)/(3 - cosx)) "d"x`
उत्तर
Let I = `int_0^(2pi) x log((3 + cosx)/(3 - cosx)) "d"x`
Let f(x) = `log((3 + cos x)/(3 - cos x))`
`"f"(2pi - x) = log((3 + cos(2pi - x))/(3 - cos(2pi - x)))`
= `log((3 + cosx)/(3 - cosx))`
= f(x)
∵ `int_0^"a" x f(x) "d"x = "a"/2 int_0^"a" f(x) "d"x "if" "f"("a" - x)` = f(x)
I = `(2pi)/2 int_0^(2pi) log((3 + cos x)/(3 - cos x)) "d"x`
= `2pi int_0^pi log ((3 + cos x)/(3 - cos x)) "d"x` .......(1)
I = `2pi int_0^pi log ((3 + cos (pi - x))/(3 - cos(pi - x)) "d"x`
`int_0^"a" f(x) "d"x = int_0^"a" f("a" - x) "d"x`
= `2 pi int_0^pi log((3 - cosx)/(3 + cos x)) "d"x` ........(2)
Add (1) and (2)
2I = `2pi int_0^pi (log((3 + cosx)/(3 - cosx)) + log((3 - cosx)/(3 + cosx)))"d"x`
= `2pi int_0^pi log((3 + cosx)/(3 - cosx) * (3 - cosx)/(3 + cosx)) "d"x`
2I = `2pi xx 0` 0
I = 0
`int_0^(2pi) x log ((3 cos x)/(3 - cos x)) "d"x` = 0
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
`int_3^4 (d"x)/(x^2 - 4)`
Evaluate the following definite integrals:
`int_(-1)^1 ("d"x)/(x^2 + 2x + 5)`
Evaluate the following definite integrals:
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x`
Evaluate the following definite integrals:
`int_0^(pi/2) "e"^x((1 + sin x)/(1 + cos x))"d"x`
Evaluate the following definite integrals:
`int_0^1 (1 - x^2)/(1 + x^2)^2 "d"x`
Evaluate the following integrals using properties of integration:
`int_(-5)^5 x cos(("e"^x - 1)/("e"^x + 1)) "d"x`
Evaluate the following integrals using properties of integration:
`int_(- pi/4)^(pi/4) sin^2x "d"x`
Evaluate the following integrals using properties of integration:
`int_0^(sin^2x) sin^-1 sqrt("t") "dt" + int_0^(cos^2x) cos^-1 sqrt("t") "dt"`
Evaluate the following integrals using properties of integration:
`int_0^1 (log(1 + x))/(1 + x^2) "d"x`
Evaluate the following integrals using properties of integration:
`int_(pi/8)^((3pi)/8) 1/(1 + sqrt(tan x)) "d"x`
Choose the correct alternative:
For any value of n ∈ Z, `int_0^pi "e"^(cos^2x) cos^3[(2n+ 1)x] "d"x` is
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) sin^2x cos x "d"x` is
Choose the correct alternative:
The value of `int_0^pi ("d"x)/(1 + 5^(cosx))` is