हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Evaluate the following integrals using properties of integration: d∫01log(1+x)1+x2 dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals using properties of integration:

`int_0^1 (log(1 + x))/(1 + x^2)  "d"x`

योग

उत्तर

Let I = `int_0^1 (log(1 + x))/(1 + x^2)  "d"x`

Now, on putting x = tanθ

dx = sec2θ dθ

x 0 1
θ 0 `pi/4`

I = `int_0^(pi/4) (log(1 + tan theta))/(1 + tan^2theta) sec^2 theta  "d"theta`

I = `int_0^(pi/4) (log(1 + tan theta))/(sec^2theta) sec^2theta  "d"theta`

`int_0^"a" f(x)  "d"x = int_0^"a" f("a" - x)  "d"x`

I = `int_0^(pi/4) log(1 + tan(pi/4 - theta)) "d"theta`

= `int_0^(pi/4) log[1 + (tan  pi/4 - tan theta)/(1 + tan  pi/4 tan theta)] "d"theta`

= `int_0^(pi/4)  log(1 + (1 - tan theta)/(1 + tan theta))"d"theta`

= `int_0^(pi/4) log ((1 + tan theta + 1 - tan theta)/(1 + tan theta)) "d"theta`

= `int_0^(pi/4) log (2/(1 + tan theta)) "d"theta`

= `int_0^(pi/4) [log2 - log(1 + tan theta)] "d"theta`

= `log 2 int_0^(pi/4) "d"theta - int_0^(pi/4) log(1 + tan theta)  "d"theta`

I = `log 2(pi/4) - "I"`

2I = `pi/4 log 2`

I = `pi/8 log 2`

shaalaa.com
Fundamental Theorems of Integral Calculus and Their Applications
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Applications of Integration - Exercise 9.3 [पृष्ठ ११३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 9 Applications of Integration
Exercise 9.3 | Q 2. (viii) | पृष्ठ ११३

संबंधित प्रश्न

Evaluate the following definite integrals:

`int_3^4 (d"x)/(x^2 - 4)`


Evaluate the following definite integrals:

`int_(-1)^1 ("d"x)/(x^2 + 2x + 5)`


Evaluate the following definite integrals:

`int_0^(pi/2) "e"^x((1 + sin x)/(1 + cos x))"d"x`


Evaluate the following definite integrals:

`int_0^1 (1 - x^2)/(1 + x^2)^2  "d"x`


Evaluate the following integrals using properties of integration:

`int_(-5)^5 x cos(("e"^x - 1)/("e"^x + 1))  "d"x`


Evaluate the following integrals using properties of integration:

`int_(- pi/4)^(pi/4) sin^2x  "d"x`


Evaluate the following integrals using properties of integration:

`int_0^(2pi) x log((3 + cosx)/(3 - cosx)) "d"x`


Evaluate the following integrals using properties of integration:

`int_0^pi sin^4 x cos^3 x  "d"x`


Evaluate the following integrals using properties of integration:

`int_0^1 |5x - 3|  "d"x`


Evaluate the following integrals using properties of integration:

`int_0^pi(xsinx)/(1 + sinx)  "'d"x`


Evaluate the following integrals using properties of integration:

`int_(pi/8)^((3pi)/8) 1/(1 + sqrt(tan x))  "d"x`


Evaluate the following integrals using properties of integration:

`int_0^pi x[sin^2(sin x) cos^2 (cos x)] "d"x`


Choose the correct alternative:

The value of `int_(-4)^4 [tan^-1  ((x^2)/(x^4 + 1)) + tan^-1 ((x^4 + 1)/x^2)] "d"x` is


Choose the correct alternative:

The value of `int_(- pi/4)^(pi/4) ((2x^7 - 3x^5 + 7x^3 - x + 1)/(cos^2x)) "d"x` is


Choose the correct alternative:

The value of `int_0^pi ("d"x)/(1 + 5^(cosx))` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×