Advertisements
Advertisements
प्रश्न
Evaluate the following integrals using properties of integration:
`int_0^1 (log(1 + x))/(1 + x^2) "d"x`
उत्तर
Let I = `int_0^1 (log(1 + x))/(1 + x^2) "d"x`
Now, on putting x = tanθ
dx = sec2θ dθ
x | 0 | 1 |
θ | 0 | `pi/4` |
I = `int_0^(pi/4) (log(1 + tan theta))/(1 + tan^2theta) sec^2 theta "d"theta`
I = `int_0^(pi/4) (log(1 + tan theta))/(sec^2theta) sec^2theta "d"theta`
`int_0^"a" f(x) "d"x = int_0^"a" f("a" - x) "d"x`
I = `int_0^(pi/4) log(1 + tan(pi/4 - theta)) "d"theta`
= `int_0^(pi/4) log[1 + (tan pi/4 - tan theta)/(1 + tan pi/4 tan theta)] "d"theta`
= `int_0^(pi/4) log(1 + (1 - tan theta)/(1 + tan theta))"d"theta`
= `int_0^(pi/4) log ((1 + tan theta + 1 - tan theta)/(1 + tan theta)) "d"theta`
= `int_0^(pi/4) log (2/(1 + tan theta)) "d"theta`
= `int_0^(pi/4) [log2 - log(1 + tan theta)] "d"theta`
= `log 2 int_0^(pi/4) "d"theta - int_0^(pi/4) log(1 + tan theta) "d"theta`
I = `log 2(pi/4) - "I"`
2I = `pi/4 log 2`
I = `pi/8 log 2`
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
`int_3^4 (d"x)/(x^2 - 4)`
Evaluate the following definite integrals:
`int_(-1)^1 ("d"x)/(x^2 + 2x + 5)`
Evaluate the following definite integrals:
`int_0^(pi/2) "e"^x((1 + sin x)/(1 + cos x))"d"x`
Evaluate the following definite integrals:
`int_0^1 (1 - x^2)/(1 + x^2)^2 "d"x`
Evaluate the following integrals using properties of integration:
`int_(-5)^5 x cos(("e"^x - 1)/("e"^x + 1)) "d"x`
Evaluate the following integrals using properties of integration:
`int_(- pi/4)^(pi/4) sin^2x "d"x`
Evaluate the following integrals using properties of integration:
`int_0^(2pi) x log((3 + cosx)/(3 - cosx)) "d"x`
Evaluate the following integrals using properties of integration:
`int_0^pi sin^4 x cos^3 x "d"x`
Evaluate the following integrals using properties of integration:
`int_0^1 |5x - 3| "d"x`
Evaluate the following integrals using properties of integration:
`int_0^pi(xsinx)/(1 + sinx) "'d"x`
Evaluate the following integrals using properties of integration:
`int_(pi/8)^((3pi)/8) 1/(1 + sqrt(tan x)) "d"x`
Evaluate the following integrals using properties of integration:
`int_0^pi x[sin^2(sin x) cos^2 (cos x)] "d"x`
Choose the correct alternative:
The value of `int_(-4)^4 [tan^-1 ((x^2)/(x^4 + 1)) + tan^-1 ((x^4 + 1)/x^2)] "d"x` is
Choose the correct alternative:
The value of `int_(- pi/4)^(pi/4) ((2x^7 - 3x^5 + 7x^3 - x + 1)/(cos^2x)) "d"x` is
Choose the correct alternative:
The value of `int_0^pi ("d"x)/(1 + 5^(cosx))` is