Advertisements
Advertisements
प्रश्न
Evaluate the following definite integrals:
`int_0^(pi/2) "e"^x((1 + sin x)/(1 + cos x))"d"x`
उत्तर
Let I = `int_0^(pi/2) "e"^x((1 + sin x)/(1 + cos x))"d"x`
= `int_0^(pi/2) "e"^x (1/(1 + cosx) + sinx/(1 + cosx))"d"x`
= `int_0^(pi/2) "e"^x (1/(2cos^2 x/2) + (2sin pi/2 cos pi/2)/(2cos^2 pi/2))"d"x`
= `int_0^(pi/2) "e"^x (1/2 sec^2 pi/2 + tan x/2)"d"x`
= `int_0^(pi/2) "e"^x (tan pi/2 + 1/2 sec^2 pi/2)"d"x`
= `["e"^x tan pi/2]_0^(pi/2)`
= `"e"^(pi/2) tan pi/4 - "e"^0 tan 0`
= `"e"^(pi/2) (1) - 0`
I = `"e"^(pi/2)`
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
`int_3^4 (d"x)/(x^2 - 4)`
Evaluate the following definite integrals:
`int_0^(pi/2) sqrt(cos theta) sin^3theta "d"theta`
Evaluate the following definite integrals:
`int_0^1 (1 - x^2)/(1 + x^2)^2 "d"x`
Evaluate the following integrals using properties of integration:
`int_(-5)^5 x cos(("e"^x - 1)/("e"^x + 1)) "d"x`
Evaluate the following integrals using properties of integration:
`int_(- pi/4)^(pi/4) sin^2x "d"x`
Evaluate the following integrals using properties of integration:
`int_0^(2pi) x log((3 + cosx)/(3 - cosx)) "d"x`
Evaluate the following integrals using properties of integration:
`int_0^pi sin^4 x cos^3 x "d"x`
Evaluate the following integrals using properties of integration:
`int_0^1 |5x - 3| "d"x`
Evaluate the following integrals using properties of integration:
`int_0^1 (log(1 + x))/(1 + x^2) "d"x`
Evaluate the following integrals using properties of integration:
`int_0^pi(xsinx)/(1 + sinx) "'d"x`
Evaluate the following integrals using properties of integration:
`int_0^pi x[sin^2(sin x) cos^2 (cos x)] "d"x`
Choose the correct alternative:
For any value of n ∈ Z, `int_0^pi "e"^(cos^2x) cos^3[(2n+ 1)x] "d"x` is
Choose the correct alternative:
The value of `int_(-4)^4 [tan^-1 ((x^2)/(x^4 + 1)) + tan^-1 ((x^4 + 1)/x^2)] "d"x` is
Choose the correct alternative:
The value of `int_(- pi/4)^(pi/4) ((2x^7 - 3x^5 + 7x^3 - x + 1)/(cos^2x)) "d"x` is