Advertisements
Advertisements
प्रश्न
Evaluate the following definite integrals:
`int_0^(pi/2) sqrt(cos theta) sin^3theta "d"theta`
उत्तर
I = `int_0^(pi/2) sqrt(cos theta) sin^3theta "d"theta`
= `int_0^(pi/2) sqrt(cos theta) (1 - cos^2theta)sintheta "d"theta`
t = cos θ
dt = sinθ dθ
θ | 0 | `pi/2` |
t | 1 | 0 |
= `int_1^0 sqrt("t") (1 - "t"^2)(- "dt")`
= `int_0^1 (sqrt("t") - "t"^2 sqrt("t")) "dt"`
= `int_0^1 ("t"^(1/2) - "t"^(5/2)) "dt"`
= `["t"^(1/2)/(3/2) - "t"^(7/2)/(7/2)]_0^1`
= `2/3 - 2/7`
= `(14 - 6)/21`
= `8/21`
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
`int_3^4 (d"x)/(x^2 - 4)`
Evaluate the following definite integrals:
`int_(-1)^1 ("d"x)/(x^2 + 2x + 5)`
Evaluate the following definite integrals:
`int_0^(pi/2) "e"^x((1 + sin x)/(1 + cos x))"d"x`
Evaluate the following definite integrals:
`int_0^1 (1 - x^2)/(1 + x^2)^2 "d"x`
Evaluate the following integrals using properties of integration:
`int_(- pi/2)^(pi/2) (x^5 + x cos x + tan^3 x + 1) "d"x`
Evaluate the following integrals using properties of integration:
`int_(- pi/4)^(pi/4) sin^2x "d"x`
Evaluate the following integrals using properties of integration:
`int_0^(2pi) x log((3 + cosx)/(3 - cosx)) "d"x`
Evaluate the following integrals using properties of integration:
`int_0^pi sin^4 x cos^3 x "d"x`
Evaluate the following integrals using properties of integration:
`int_0^(sin^2x) sin^-1 sqrt("t") "dt" + int_0^(cos^2x) cos^-1 sqrt("t") "dt"`
Evaluate the following integrals using properties of integration:
`int_0^1 (log(1 + x))/(1 + x^2) "d"x`
Evaluate the following integrals using properties of integration:
`int_0^pi(xsinx)/(1 + sinx) "'d"x`
Choose the correct alternative:
For any value of n ∈ Z, `int_0^pi "e"^(cos^2x) cos^3[(2n+ 1)x] "d"x` is
Choose the correct alternative:
The value of `int_(-4)^4 [tan^-1 ((x^2)/(x^4 + 1)) + tan^-1 ((x^4 + 1)/x^2)] "d"x` is
Choose the correct alternative:
The value of `int_(- pi/4)^(pi/4) ((2x^7 - 3x^5 + 7x^3 - x + 1)/(cos^2x)) "d"x` is
Choose the correct alternative:
The value of `int_0^pi ("d"x)/(1 + 5^(cosx))` is