Advertisements
Advertisements
प्रश्न
Evaluate the following definite integrals:
`int_0^1 (1 - x^2)/(1 + x^2)^2 "d"x`
उत्तर
Let I = `int_0^1 (1 - x^2)/(1 + x^2)^2 "d"x`
= `int_0^1[2/(1 + x^2)^2 - (1 + x^2)/(1 + x^2)^2]"d"x`
I = `int_0^1 [2/(1 + x^2)^2 - 1/((1 + x^2))]"d"x` ........(1)
I1 = `int_0^1 2/(1 + x^2)^2 "d"x`
Put x = tan θ
dx = sec2θ dθ
x | 0 | 1 |
θ | 0 | `pi/4` |
= `2 int_0^(pi/4) (sec^2theta "d"theta)/(1 + tan^2theta)^2`
= `2 int_0^(pi/4) (sec^2theta)/(sec^2theta)^2 "d"theta`
= `2 int_0^(pi/4) cos^2theta "d"theta`
= `2 int_0^(pi/4) ((1 + cos 2theta)/2) "d"theta`
= `(theta + (sin 2theta)/2)_0^(pi/4)`
= `pi/4 + 1/2`
I2 = `int_0^1 1/(1 + x^2) "d"x`
= `[tan^-1 x]_0^1`
= `pi/4`
(1) ⇒ I = `pi/4 + 1/2 - pi/4`
I = `1/2`
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
`int_3^4 (d"x)/(x^2 - 4)`
Evaluate the following definite integrals:
`int_(-1)^1 ("d"x)/(x^2 + 2x + 5)`
Evaluate the following definite integrals:
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x`
Evaluate the following definite integrals:
`int_0^(pi/2) "e"^x((1 + sin x)/(1 + cos x))"d"x`
Evaluate the following definite integrals:
`int_0^(pi/2) sqrt(cos theta) sin^3theta "d"theta`
Evaluate the following integrals using properties of integration:
`int_(- pi/4)^(pi/4) sin^2x "d"x`
Evaluate the following integrals using properties of integration:
`int_0^pi sin^4 x cos^3 x "d"x`
Evaluate the following integrals using properties of integration:
`int_0^(sin^2x) sin^-1 sqrt("t") "dt" + int_0^(cos^2x) cos^-1 sqrt("t") "dt"`
Evaluate the following integrals using properties of integration:
`int_(pi/8)^((3pi)/8) 1/(1 + sqrt(tan x)) "d"x`
Evaluate the following integrals using properties of integration:
`int_0^pi x[sin^2(sin x) cos^2 (cos x)] "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) sin^2x cos x "d"x` is
Choose the correct alternative:
The value of `int_(-4)^4 [tan^-1 ((x^2)/(x^4 + 1)) + tan^-1 ((x^4 + 1)/x^2)] "d"x` is
Choose the correct alternative:
The value of `int_(- pi/4)^(pi/4) ((2x^7 - 3x^5 + 7x^3 - x + 1)/(cos^2x)) "d"x` is
Choose the correct alternative:
The value of `int_0^pi ("d"x)/(1 + 5^(cosx))` is