हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Evaluate the following definite integrals: d∫011-x2(1+x2)2 dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following definite integrals:

`int_0^1 (1 - x^2)/(1 + x^2)^2  "d"x`

योग

उत्तर

Let I = `int_0^1 (1 - x^2)/(1 + x^2)^2  "d"x`

= `int_0^1[2/(1 + x^2)^2 - (1 + x^2)/(1 + x^2)^2]"d"x`

I = `int_0^1 [2/(1 + x^2)^2 - 1/((1 + x^2))]"d"x`   ........(1)

I1 = `int_0^1 2/(1 + x^2)^2  "d"x`

Put x = tan θ

dx = sec2θ dθ

x 0 1
θ 0 `pi/4`

= `2 int_0^(pi/4) (sec^2theta  "d"theta)/(1 + tan^2theta)^2`

= `2 int_0^(pi/4) (sec^2theta)/(sec^2theta)^2  "d"theta`

= `2 int_0^(pi/4) cos^2theta  "d"theta`

= `2 int_0^(pi/4) ((1 + cos 2theta)/2)  "d"theta`

= `(theta + (sin 2theta)/2)_0^(pi/4)`

= `pi/4 + 1/2`

I2 = `int_0^1 1/(1 + x^2)  "d"x`

= `[tan^-1 x]_0^1`

= `pi/4`

(1) ⇒ I = `pi/4 + 1/2 - pi/4`

I = `1/2`

shaalaa.com
Fundamental Theorems of Integral Calculus and Their Applications
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Applications of Integration - Exercise 9.3 [पृष्ठ ११२]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 9 Applications of Integration
Exercise 9.3 | Q 1. (vi) | पृष्ठ ११२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×