Advertisements
Advertisements
प्रश्न
Evaluate the following definite integrals:
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x`
उत्तर
Let I = `int_0^1 sqrt((1 - x)/(1 + x)) "d"x` .......(1)
Put x = cos2θ ........(2)
x | 0 | 1 |
t | `pi/4` | 0 |
DIfferentiate with respect to θ
dx = – 2sin2θdθ ........(3)
Substitute (2) and (3) in (1), we get
(1) ⇒ I = `int_(pi/4)^0 sqrt((1 - cos 2theta)/(1 + cos 2theta)) (- 2 sin^2theta)"d"theta`
= `2int_0^4 (1 - cos 2theta)"d"theta`
= `2[theta - (sin 2theta)/2]_0^(pi/4)`
= `2[pi/4 - /2]`
= `pi/2 - 1.
Consider:
`sqrt((1 - cos 2theta)/(1 + co 2theta)) (sin 2theta)`
= `sqrt((2sin^2theta)/(2cos^2theta)) (sin 2theta)`
= `sintheta/costheta (2sin thetacos theta)`
= 2sin2θ
= `2 ((1 - cos 2theta))/2`
= 1 – cos2θ
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
`int_(-1)^1 ("d"x)/(x^2 + 2x + 5)`
Evaluate the following definite integrals:
`int_0^(pi/2) "e"^x((1 + sin x)/(1 + cos x))"d"x`
Evaluate the following definite integrals:
`int_0^1 (1 - x^2)/(1 + x^2)^2 "d"x`
Evaluate the following integrals using properties of integration:
`int_(-5)^5 x cos(("e"^x - 1)/("e"^x + 1)) "d"x`
Evaluate the following integrals using properties of integration:
`int_(- pi/2)^(pi/2) (x^5 + x cos x + tan^3 x + 1) "d"x`
Evaluate the following integrals using properties of integration:
`int_(- pi/4)^(pi/4) sin^2x "d"x`
Evaluate the following integrals using properties of integration:
`int_0^(2pi) x log((3 + cosx)/(3 - cosx)) "d"x`
Evaluate the following integrals using properties of integration:
`int_0^pi sin^4 x cos^3 x "d"x`
Evaluate the following integrals using properties of integration:
`int_0^1 |5x - 3| "d"x`
Evaluate the following integrals using properties of integration:
`int_0^(sin^2x) sin^-1 sqrt("t") "dt" + int_0^(cos^2x) cos^-1 sqrt("t") "dt"`
Evaluate the following integrals using properties of integration:
`int_0^1 (log(1 + x))/(1 + x^2) "d"x`
Evaluate the following integrals using properties of integration:
`int_0^pi(xsinx)/(1 + sinx) "'d"x`
Evaluate the following integrals using properties of integration:
`int_0^pi x[sin^2(sin x) cos^2 (cos x)] "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) sin^2x cos x "d"x` is
Choose the correct alternative:
The value of `int_(-4)^4 [tan^-1 ((x^2)/(x^4 + 1)) + tan^-1 ((x^4 + 1)/x^2)] "d"x` is
Choose the correct alternative:
The value of `int_(- pi/4)^(pi/4) ((2x^7 - 3x^5 + 7x^3 - x + 1)/(cos^2x)) "d"x` is