Advertisements
Advertisements
प्रश्न
Evaluate the following integrals using properties of integration:
`int_0^pi sin^4 x cos^3 x "d"x`
उत्तर
`int_0^pi sin^4 x cos^3 x "d"x`
f(x) = sin4x cos3x
f(2π – x) = sin4(2π – x) cos3(2π – x)
= sin4x cos3x
f(2π – x) = f(x)
if `"f"(2"a" - x) = "f("x)` then `int_0^(2"a") "f"(x) "d"x`
= `2 int_0^"a" "f"(x) "d"x`
I = `2 int_0^pi sin^4 x cos^3 x "d"x`
t = sin x
dt = cox dx
x | 0 | `pi` |
t | 0 | 0 |
` 2int_0^pi sin^4x(1 - sin^2x) cosx "d"x`
Limit from 0 to π tends to 0 to 0
∴ Integral value = 0
∴ `int_0^pi sin^4 x cos^3x "d"x` = 0
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
`int_3^4 (d"x)/(x^2 - 4)`
Evaluate the following definite integrals:
`int_(-1)^1 ("d"x)/(x^2 + 2x + 5)`
Evaluate the following definite integrals:
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x`
Evaluate the following definite integrals:
`int_0^(pi/2) "e"^x((1 + sin x)/(1 + cos x))"d"x`
Evaluate the following definite integrals:
`int_0^(pi/2) sqrt(cos theta) sin^3theta "d"theta`
Evaluate the following integrals using properties of integration:
`int_(-5)^5 x cos(("e"^x - 1)/("e"^x + 1)) "d"x`
Evaluate the following integrals using properties of integration:
`int_(- pi/2)^(pi/2) (x^5 + x cos x + tan^3 x + 1) "d"x`
Evaluate the following integrals using properties of integration:
`int_0^1 |5x - 3| "d"x`
Evaluate the following integrals using properties of integration:
`int_0^(sin^2x) sin^-1 sqrt("t") "dt" + int_0^(cos^2x) cos^-1 sqrt("t") "dt"`
Evaluate the following integrals using properties of integration:
`int_0^1 (log(1 + x))/(1 + x^2) "d"x`
Evaluate the following integrals using properties of integration:
`int_0^pi(xsinx)/(1 + sinx) "'d"x`
Evaluate the following integrals using properties of integration:
`int_(pi/8)^((3pi)/8) 1/(1 + sqrt(tan x)) "d"x`
Choose the correct alternative:
For any value of n ∈ Z, `int_0^pi "e"^(cos^2x) cos^3[(2n+ 1)x] "d"x` is
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) sin^2x cos x "d"x` is
Choose the correct alternative:
The value of `int_(-4)^4 [tan^-1 ((x^2)/(x^4 + 1)) + tan^-1 ((x^4 + 1)/x^2)] "d"x` is
Choose the correct alternative:
The value of `int_0^pi ("d"x)/(1 + 5^(cosx))` is