हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Evaluate the following integrals using properties of integration: 'd∫0πxsinx1+sinx 'dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals using properties of integration:

`int_0^pi(xsinx)/(1 + sinx)  "'d"x`

योग

उत्तर

Let f(x)= `sinx/(1 + sinx)`

`"f"(pi - x) = (sin(pi - x))/(1 + sin(pi - x))`

= `sinx/(1 + sinx)`

= f(x)

`int_0^"a"  xf(x) "d"x = "a"/2 int_0^"a" f(x)  "d"x`

If `f("a" - x) = f(x)`

`int_0^pi xsinx/(1 + sinx)  "d"x = pi/2 int_0^pi  sinx/(1 + sin x)  "d"x`

= `pi/2 int_0^pi  (sin x(1 - sin x))/((1 + sin x)(1 - sin x)) "d"x`

= `pi/2int_0^pi  (sinx  sin^2x)/(1 - sin^2x)  "d"x`

= `pi/2 int (sin x - sin^2x)/(cos^x)  "d"x`

= `pi/2[int_0^pi  sinx/(cos^2x)  "d"x  int_0^pi  (sin^2x)/(cos^2x)  "d"x]`

= `pi/2 [int_0^pi tan x sec x  dx - int_0^pi tan^2 x  "d"x]`

= `pi/2 [int_0^pi  tan x sec x  "d"x - int_0^pi (sec^2x - 1) "d"x]`

= `pi/2[[sec x]_0^pi - [tan x - x]_0^pi]`

= `pi/2 [(- 1 - 1) - (0 - pi - 0)]`

= `pi/2 [-2 + pi]`

= `pi/2 [pi- 2]`

shaalaa.com
Fundamental Theorems of Integral Calculus and Their Applications
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Applications of Integration - Exercise 9.3 [पृष्ठ ११३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 9 Applications of Integration
Exercise 9.3 | Q 2. (ix) | पृष्ठ ११३

संबंधित प्रश्न

Evaluate the following definite integrals:

`int_(-1)^1 ("d"x)/(x^2 + 2x + 5)`


Evaluate the following definite integrals:

`int_0^1 sqrt((1 - x)/(1 + x)) "d"x`


Evaluate the following definite integrals:

`int_0^(pi/2) "e"^x((1 + sin x)/(1 + cos x))"d"x`


Evaluate the following definite integrals:

`int_0^(pi/2) sqrt(cos theta) sin^3theta  "d"theta`


Evaluate the following definite integrals:

`int_0^1 (1 - x^2)/(1 + x^2)^2  "d"x`


Evaluate the following integrals using properties of integration:

`int_(-5)^5 x cos(("e"^x - 1)/("e"^x + 1))  "d"x`


Evaluate the following integrals using properties of integration:

`int_(- pi/4)^(pi/4) sin^2x  "d"x`


Evaluate the following integrals using properties of integration:

`int_0^pi sin^4 x cos^3 x  "d"x`


Evaluate the following integrals using properties of integration:

`int_0^(sin^2x) sin^-1 sqrt("t")  "dt" + int_0^(cos^2x) cos^-1 sqrt("t")  "dt"`


Evaluate the following integrals using properties of integration:

`int_0^1 (log(1 + x))/(1 + x^2)  "d"x`


Evaluate the following integrals using properties of integration:

`int_0^pi x[sin^2(sin x) cos^2 (cos x)] "d"x`


Choose the correct alternative:

For any value of n ∈ Z, `int_0^pi "e"^(cos^2x) cos^3[(2n+ 1)x]  "d"x` is


Choose the correct alternative:

The value of `int_(-4)^4 [tan^-1  ((x^2)/(x^4 + 1)) + tan^-1 ((x^4 + 1)/x^2)] "d"x` is


Choose the correct alternative:

The value of `int_(- pi/4)^(pi/4) ((2x^7 - 3x^5 + 7x^3 - x + 1)/(cos^2x)) "d"x` is


Choose the correct alternative:

The value of `int_0^pi ("d"x)/(1 + 5^(cosx))` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×