Advertisements
Advertisements
प्रश्न
Evaluate the following integrals using properties of integration:
`int_0^pi(xsinx)/(1 + sinx) "'d"x`
उत्तर
Let f(x)= `sinx/(1 + sinx)`
`"f"(pi - x) = (sin(pi - x))/(1 + sin(pi - x))`
= `sinx/(1 + sinx)`
= f(x)
`int_0^"a" xf(x) "d"x = "a"/2 int_0^"a" f(x) "d"x`
If `f("a" - x) = f(x)`
`int_0^pi xsinx/(1 + sinx) "d"x = pi/2 int_0^pi sinx/(1 + sin x) "d"x`
= `pi/2 int_0^pi (sin x(1 - sin x))/((1 + sin x)(1 - sin x)) "d"x`
= `pi/2int_0^pi (sinx sin^2x)/(1 - sin^2x) "d"x`
= `pi/2 int (sin x - sin^2x)/(cos^x) "d"x`
= `pi/2[int_0^pi sinx/(cos^2x) "d"x int_0^pi (sin^2x)/(cos^2x) "d"x]`
= `pi/2 [int_0^pi tan x sec x dx - int_0^pi tan^2 x "d"x]`
= `pi/2 [int_0^pi tan x sec x "d"x - int_0^pi (sec^2x - 1) "d"x]`
= `pi/2[[sec x]_0^pi - [tan x - x]_0^pi]`
= `pi/2 [(- 1 - 1) - (0 - pi - 0)]`
= `pi/2 [-2 + pi]`
= `pi/2 [pi- 2]`
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
`int_(-1)^1 ("d"x)/(x^2 + 2x + 5)`
Evaluate the following definite integrals:
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x`
Evaluate the following definite integrals:
`int_0^(pi/2) "e"^x((1 + sin x)/(1 + cos x))"d"x`
Evaluate the following definite integrals:
`int_0^(pi/2) sqrt(cos theta) sin^3theta "d"theta`
Evaluate the following definite integrals:
`int_0^1 (1 - x^2)/(1 + x^2)^2 "d"x`
Evaluate the following integrals using properties of integration:
`int_(-5)^5 x cos(("e"^x - 1)/("e"^x + 1)) "d"x`
Evaluate the following integrals using properties of integration:
`int_(- pi/4)^(pi/4) sin^2x "d"x`
Evaluate the following integrals using properties of integration:
`int_0^pi sin^4 x cos^3 x "d"x`
Evaluate the following integrals using properties of integration:
`int_0^(sin^2x) sin^-1 sqrt("t") "dt" + int_0^(cos^2x) cos^-1 sqrt("t") "dt"`
Evaluate the following integrals using properties of integration:
`int_0^1 (log(1 + x))/(1 + x^2) "d"x`
Evaluate the following integrals using properties of integration:
`int_0^pi x[sin^2(sin x) cos^2 (cos x)] "d"x`
Choose the correct alternative:
For any value of n ∈ Z, `int_0^pi "e"^(cos^2x) cos^3[(2n+ 1)x] "d"x` is
Choose the correct alternative:
The value of `int_(-4)^4 [tan^-1 ((x^2)/(x^4 + 1)) + tan^-1 ((x^4 + 1)/x^2)] "d"x` is
Choose the correct alternative:
The value of `int_(- pi/4)^(pi/4) ((2x^7 - 3x^5 + 7x^3 - x + 1)/(cos^2x)) "d"x` is
Choose the correct alternative:
The value of `int_0^pi ("d"x)/(1 + 5^(cosx))` is