हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Evaluate the following integrals using properties of integration: d∫-π2π2(x5+xcosx+tan3x+1) dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals using properties of integration:

`int_(- pi/2)^(pi/2) (x^5 + x cos x + tan^3 x + 1)  "d"x`

योग

उत्तर

`int_(- pi/2)^(pi/2) (x^5 + x cos x + tan^3 x)  "d"x`

= `int_((-pi)/2)^(pi/2) (x^5 + x cos x + tan^3x)  "d"x + int_((- pi)/2)^(pi/2)`

= Let f(x) = x5 + x cos x + tan3x

f(– x) = – x5 – x cos x – tan3x

f(x) = – f(– x)

f(x) is an odd function

∴ `int_((- pi)/2)^(pi/2) (x^5 + x cos x + tan^3x)  "d"x` = 0

Let g(x) = `int_((-pi)/2)^(pi/2)  "d"x = [x]_((- pi)/2)^(pi/2)`

= `pi/2 - (- pi/2)`

= `pi`

`int_(- pi/2)^(pi/2) (x^5 + x cos x + tan^3 x)  "d"x`

= `int_((-pi)/2)^(pi/2) f(x)"d"x + int_((-pi)/2)^(pi/2) "g"(x) "d"x`

= `0 + pi`

= `pi`

shaalaa.com
Fundamental Theorems of Integral Calculus and Their Applications
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Applications of Integration - Exercise 9.3 [पृष्ठ ११३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 9 Applications of Integration
Exercise 9.3 | Q 2. (ii) | पृष्ठ ११३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×