Advertisements
Advertisements
प्रश्न
Evaluate the following integrals using properties of integration:
`int_(- pi/2)^(pi/2) (x^5 + x cos x + tan^3 x + 1) "d"x`
उत्तर
`int_(- pi/2)^(pi/2) (x^5 + x cos x + tan^3 x) "d"x`
= `int_((-pi)/2)^(pi/2) (x^5 + x cos x + tan^3x) "d"x + int_((- pi)/2)^(pi/2)`
= Let f(x) = x5 + x cos x + tan3x
f(– x) = – x5 – x cos x – tan3x
f(x) = – f(– x)
f(x) is an odd function
∴ `int_((- pi)/2)^(pi/2) (x^5 + x cos x + tan^3x) "d"x` = 0
Let g(x) = `int_((-pi)/2)^(pi/2) "d"x = [x]_((- pi)/2)^(pi/2)`
= `pi/2 - (- pi/2)`
= `pi`
`int_(- pi/2)^(pi/2) (x^5 + x cos x + tan^3 x) "d"x`
= `int_((-pi)/2)^(pi/2) f(x)"d"x + int_((-pi)/2)^(pi/2) "g"(x) "d"x`
= `0 + pi`
= `pi`
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
`int_(-1)^1 ("d"x)/(x^2 + 2x + 5)`
Evaluate the following definite integrals:
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x`
Evaluate the following definite integrals:
`int_0^(pi/2) "e"^x((1 + sin x)/(1 + cos x))"d"x`
Evaluate the following definite integrals:
`int_0^(pi/2) sqrt(cos theta) sin^3theta "d"theta`
Evaluate the following integrals using properties of integration:
`int_(-5)^5 x cos(("e"^x - 1)/("e"^x + 1)) "d"x`
Evaluate the following integrals using properties of integration:
`int_(- pi/4)^(pi/4) sin^2x "d"x`
Evaluate the following integrals using properties of integration:
`int_0^(2pi) x log((3 + cosx)/(3 - cosx)) "d"x`
Evaluate the following integrals using properties of integration:
`int_0^1 (log(1 + x))/(1 + x^2) "d"x`
Evaluate the following integrals using properties of integration:
`int_0^pi(xsinx)/(1 + sinx) "'d"x`
Evaluate the following integrals using properties of integration:
`int_(pi/8)^((3pi)/8) 1/(1 + sqrt(tan x)) "d"x`
Choose the correct alternative:
For any value of n ∈ Z, `int_0^pi "e"^(cos^2x) cos^3[(2n+ 1)x] "d"x` is
Choose the correct alternative:
The value of `int_(-4)^4 [tan^-1 ((x^2)/(x^4 + 1)) + tan^-1 ((x^4 + 1)/x^2)] "d"x` is
Choose the correct alternative:
The value of `int_(- pi/4)^(pi/4) ((2x^7 - 3x^5 + 7x^3 - x + 1)/(cos^2x)) "d"x` is
Choose the correct alternative:
The value of `int_0^pi ("d"x)/(1 + 5^(cosx))` is