मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Evaluate the following definite integrals: d∫011-x2(1+x2)2 dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following definite integrals:

`int_0^1 (1 - x^2)/(1 + x^2)^2  "d"x`

बेरीज

उत्तर

Let I = `int_0^1 (1 - x^2)/(1 + x^2)^2  "d"x`

= `int_0^1[2/(1 + x^2)^2 - (1 + x^2)/(1 + x^2)^2]"d"x`

I = `int_0^1 [2/(1 + x^2)^2 - 1/((1 + x^2))]"d"x`   ........(1)

I1 = `int_0^1 2/(1 + x^2)^2  "d"x`

Put x = tan θ

dx = sec2θ dθ

x 0 1
θ 0 `pi/4`

= `2 int_0^(pi/4) (sec^2theta  "d"theta)/(1 + tan^2theta)^2`

= `2 int_0^(pi/4) (sec^2theta)/(sec^2theta)^2  "d"theta`

= `2 int_0^(pi/4) cos^2theta  "d"theta`

= `2 int_0^(pi/4) ((1 + cos 2theta)/2)  "d"theta`

= `(theta + (sin 2theta)/2)_0^(pi/4)`

= `pi/4 + 1/2`

I2 = `int_0^1 1/(1 + x^2)  "d"x`

= `[tan^-1 x]_0^1`

= `pi/4`

(1) ⇒ I = `pi/4 + 1/2 - pi/4`

I = `1/2`

shaalaa.com
Fundamental Theorems of Integral Calculus and Their Applications
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Applications of Integration - Exercise 9.3 [पृष्ठ ११२]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 9 Applications of Integration
Exercise 9.3 | Q 1. (vi) | पृष्ठ ११२

संबंधित प्रश्‍न

Evaluate the following definite integrals:

`int_(-1)^1 ("d"x)/(x^2 + 2x + 5)`


Evaluate the following definite integrals:

`int_0^1 sqrt((1 - x)/(1 + x)) "d"x`


Evaluate the following definite integrals:

`int_0^(pi/2) "e"^x((1 + sin x)/(1 + cos x))"d"x`


Evaluate the following definite integrals:

`int_0^(pi/2) sqrt(cos theta) sin^3theta  "d"theta`


Evaluate the following integrals using properties of integration:

`int_(-5)^5 x cos(("e"^x - 1)/("e"^x + 1))  "d"x`


Evaluate the following integrals using properties of integration:

`int_(- pi/2)^(pi/2) (x^5 + x cos x + tan^3 x + 1)  "d"x`


Evaluate the following integrals using properties of integration:

`int_(- pi/4)^(pi/4) sin^2x  "d"x`


Evaluate the following integrals using properties of integration:

`int_0^(sin^2x) sin^-1 sqrt("t")  "dt" + int_0^(cos^2x) cos^-1 sqrt("t")  "dt"`


Evaluate the following integrals using properties of integration:

`int_0^1 (log(1 + x))/(1 + x^2)  "d"x`


Evaluate the following integrals using properties of integration:

`int_0^pi(xsinx)/(1 + sinx)  "'d"x`


Evaluate the following integrals using properties of integration:

`int_(pi/8)^((3pi)/8) 1/(1 + sqrt(tan x))  "d"x`


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) sin^2x cos x  "d"x` is


Choose the correct alternative:

The value of `int_(-4)^4 [tan^-1  ((x^2)/(x^4 + 1)) + tan^-1 ((x^4 + 1)/x^2)] "d"x` is


Choose the correct alternative:

The value of `int_(- pi/4)^(pi/4) ((2x^7 - 3x^5 + 7x^3 - x + 1)/(cos^2x)) "d"x` is


Choose the correct alternative:

The value of `int_0^pi ("d"x)/(1 + 5^(cosx))` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×