मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Evaluate the following integrals using properties of integration: d∫π83π811+tanx dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals using properties of integration:

`int_(pi/8)^((3pi)/8) 1/(1 + sqrt(tan x))  "d"x`

बेरीज

उत्तर

Let I = `int_(pi/8)^((3pi)/8) 1/(1 + sqrt(tan x))  "d"x`   .......(1)

`int_"a"^"b" f(x)  "d"x = int_"a"^"b" f("a" + "b" - x)  "d"x`

I = `int_(pi/8)^((3pi)/8) 1/(1 + sqrt(tan (pi/8 + (3pi)/8 - x)))  "d"x`

= `int_(pi/8)^((3pi)/8) 1/(1 + sqrt(tan(pi/2 - x)))  "d"x`

= `int_(pi/8)^((3pi)/8) 1/(1 + sqrt(cot x))  "d"x`

= `int_(pi/8)^((3pi)/8) 1/(1 + 1/sqrt(tan x))  "d"x`

I = `int_(pi/8)^((3pi)/8) sqrt(tanx)/(1 + sqrt(tan x))  "d"x`  ........(2)

Add (1) + (2)

2I = `int_(pi/8)^((3pi)/8) (1 + sqrt(tan x))/(1 + sqrt(tan x))  "d"x`

= `int_(pi/8)^((3pi)/8)  "d"x`

= `[x]_(pi/8)^((3pi)/8)`

= `(3pi)/8- pi/8`

2I = `(2pi)/8 = (pi/4)` 

I = `pi/8`

`int_(pi/8)^((3pi)/8) 1/(1 + sqrt(tan x))  "d"x = pi/8`

shaalaa.com
Fundamental Theorems of Integral Calculus and Their Applications
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Applications of Integration - Exercise 9.3 [पृष्ठ ११३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 9 Applications of Integration
Exercise 9.3 | Q 2. (x) | पृष्ठ ११३

संबंधित प्रश्‍न

Evaluate the following definite integrals:

`int_3^4 (d"x)/(x^2 - 4)`


Evaluate the following definite integrals:

`int_0^1 sqrt((1 - x)/(1 + x)) "d"x`


Evaluate the following definite integrals:

`int_0^(pi/2) "e"^x((1 + sin x)/(1 + cos x))"d"x`


Evaluate the following definite integrals:

`int_0^1 (1 - x^2)/(1 + x^2)^2  "d"x`


Evaluate the following integrals using properties of integration:

`int_(-5)^5 x cos(("e"^x - 1)/("e"^x + 1))  "d"x`


Evaluate the following integrals using properties of integration:

`int_(- pi/2)^(pi/2) (x^5 + x cos x + tan^3 x + 1)  "d"x`


Evaluate the following integrals using properties of integration:

`int_(- pi/4)^(pi/4) sin^2x  "d"x`


Evaluate the following integrals using properties of integration:

`int_0^(2pi) x log((3 + cosx)/(3 - cosx)) "d"x`


Evaluate the following integrals using properties of integration:

`int_0^1 |5x - 3|  "d"x`


Evaluate the following integrals using properties of integration:

`int_0^(sin^2x) sin^-1 sqrt("t")  "dt" + int_0^(cos^2x) cos^-1 sqrt("t")  "dt"`


Evaluate the following integrals using properties of integration:

`int_0^1 (log(1 + x))/(1 + x^2)  "d"x`


Evaluate the following integrals using properties of integration:

`int_0^pi x[sin^2(sin x) cos^2 (cos x)] "d"x`


Choose the correct alternative:

For any value of n ∈ Z, `int_0^pi "e"^(cos^2x) cos^3[(2n+ 1)x]  "d"x` is


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) sin^2x cos x  "d"x` is


Choose the correct alternative:

The value of `int_(-4)^4 [tan^-1  ((x^2)/(x^4 + 1)) + tan^-1 ((x^4 + 1)/x^2)] "d"x` is


Choose the correct alternative:

The value of `int_(- pi/4)^(pi/4) ((2x^7 - 3x^5 + 7x^3 - x + 1)/(cos^2x)) "d"x` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×