English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Evaluate the following integrals using properties of integration: d∫π83π811+tanx dx - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integrals using properties of integration:

`int_(pi/8)^((3pi)/8) 1/(1 + sqrt(tan x))  "d"x`

Sum

Solution

Let I = `int_(pi/8)^((3pi)/8) 1/(1 + sqrt(tan x))  "d"x`   .......(1)

`int_"a"^"b" f(x)  "d"x = int_"a"^"b" f("a" + "b" - x)  "d"x`

I = `int_(pi/8)^((3pi)/8) 1/(1 + sqrt(tan (pi/8 + (3pi)/8 - x)))  "d"x`

= `int_(pi/8)^((3pi)/8) 1/(1 + sqrt(tan(pi/2 - x)))  "d"x`

= `int_(pi/8)^((3pi)/8) 1/(1 + sqrt(cot x))  "d"x`

= `int_(pi/8)^((3pi)/8) 1/(1 + 1/sqrt(tan x))  "d"x`

I = `int_(pi/8)^((3pi)/8) sqrt(tanx)/(1 + sqrt(tan x))  "d"x`  ........(2)

Add (1) + (2)

2I = `int_(pi/8)^((3pi)/8) (1 + sqrt(tan x))/(1 + sqrt(tan x))  "d"x`

= `int_(pi/8)^((3pi)/8)  "d"x`

= `[x]_(pi/8)^((3pi)/8)`

= `(3pi)/8- pi/8`

2I = `(2pi)/8 = (pi/4)` 

I = `pi/8`

`int_(pi/8)^((3pi)/8) 1/(1 + sqrt(tan x))  "d"x = pi/8`

shaalaa.com
Fundamental Theorems of Integral Calculus and Their Applications
  Is there an error in this question or solution?
Chapter 9: Applications of Integration - Exercise 9.3 [Page 113]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 9 Applications of Integration
Exercise 9.3 | Q 2. (x) | Page 113
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×