English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Evaluate the following integrals using properties of integration: d∫0πx[sin2(sinx)cos2(cosx)]dx - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integrals using properties of integration:

`int_0^pi x[sin^2(sin x) cos^2 (cos x)] "d"x`

Sum

Solution

Let I = `int_0^pi x[sin^2(sin x) cos^2 (cos x)] "d"x`

fx) = sin2(sin x) + cos2(cos x)

f(π – x) = sin2(sin π – x)) + cos2(cos(π – x))

= sin2(sin x) + cos2(cos x)

f(x) = f(π – x)

`int_0^"a" x f(x)  "d"x = "a"/ int_0^"a" f(x  "d"x`

If `"f"("a" - x) = "f"(x)`

∴ I = `pi/2 int_0^pi [sin^2(sin x) + cos^2(cos x)]  "d"x`

If `"f"(2"a" - x) = "f"(x)`, then `int_0^(2"a") f(x)  "d"x = 2int_0^"a" f(x)  "d"x`

I = `pi/2 xx 2 int_0^(pi/2) [sin^2(sin x) + cos^2 (cos x)]  "d"x`  ........(1)

I = `pi int_0^(pi/2) [sin^2(sin(pi/2 - x) + cos^2(cos(pi/2 - ))]  "d"x`

∵ `int_0^"a" f(x)  "d"x = int_0^"a" f("a" - x)  "d"x`

= `pi  int_0^(pi/2) [sin^2 (cos x ) + cos^2 (sin x)]  "d"x`  ........(2)

Add (1) + (2)

2I = `pi  int_0^(pi/2) [sin^2 (sin x) + cos^2 (cos x) + sin^2(cos x) + cos^2 (sin x)]  "d"x`

= `pi int_0^(pi/2) 2  "d"x`

= `pi [2x]_0^(pi/2)`

= `2pi xx pi/2`

= `pi^2`

2I = `pi^2`

I = `pi^2/2`

shaalaa.com
Fundamental Theorems of Integral Calculus and Their Applications
  Is there an error in this question or solution?
Chapter 9: Applications of Integration - Exercise 9.3 [Page 113]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 9 Applications of Integration
Exercise 9.3 | Q 2. (xi) | Page 113

RELATED QUESTIONS

Evaluate the following definite integrals:

`int_(-1)^1 ("d"x)/(x^2 + 2x + 5)`


Evaluate the following definite integrals:

`int_0^1 sqrt((1 - x)/(1 + x)) "d"x`


Evaluate the following definite integrals:

`int_0^(pi/2) sqrt(cos theta) sin^3theta  "d"theta`


Evaluate the following definite integrals:

`int_0^1 (1 - x^2)/(1 + x^2)^2  "d"x`


Evaluate the following integrals using properties of integration:

`int_(-5)^5 x cos(("e"^x - 1)/("e"^x + 1))  "d"x`


Evaluate the following integrals using properties of integration:

`int_(- pi/2)^(pi/2) (x^5 + x cos x + tan^3 x + 1)  "d"x`


Evaluate the following integrals using properties of integration:

`int_(- pi/4)^(pi/4) sin^2x  "d"x`


Evaluate the following integrals using properties of integration:

`int_0^pi sin^4 x cos^3 x  "d"x`


Evaluate the following integrals using properties of integration:

`int_0^1 |5x - 3|  "d"x`


Evaluate the following integrals using properties of integration:

`int_0^(sin^2x) sin^-1 sqrt("t")  "dt" + int_0^(cos^2x) cos^-1 sqrt("t")  "dt"`


Evaluate the following integrals using properties of integration:

`int_0^pi(xsinx)/(1 + sinx)  "'d"x`


Evaluate the following integrals using properties of integration:

`int_(pi/8)^((3pi)/8) 1/(1 + sqrt(tan x))  "d"x`


Choose the correct alternative:

For any value of n ∈ Z, `int_0^pi "e"^(cos^2x) cos^3[(2n+ 1)x]  "d"x` is


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) sin^2x cos x  "d"x` is


Choose the correct alternative:

The value of `int_(-4)^4 [tan^-1  ((x^2)/(x^4 + 1)) + tan^-1 ((x^4 + 1)/x^2)] "d"x` is


Choose the correct alternative:

The value of `int_(- pi/4)^(pi/4) ((2x^7 - 3x^5 + 7x^3 - x + 1)/(cos^2x)) "d"x` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×