Advertisements
Advertisements
Question
Evaluate the following definite integrals:
`int_(-1)^1 ("d"x)/(x^2 + 2x + 5)`
Solution
Let I = `int_(-1)^1 ("d"x)/(x^2 + 2x + 5)`
= `int_(-1)^1 ("d"x)/((x + 1)^2 - 1 + 5)`
= `int_(-1)^1 ("d"x)/((x + 1)^2 + (2)^2)` ........`[int ("d"x)/(x^2 + "a"^2) = 1/"a" tan^-1 (x/"a")]`
= `[1/2 tan^-1 ((x+ 1)/2)]_(-1)^1`
= `1/2[tan^-1 (2/2) - tan^-1 (0/2)]`
= `1/2[tan^-1 (1) - tan^-1 (0)]`
= `1/2 [pi/4 - 0]`
= `pi/8`
APPEARS IN
RELATED QUESTIONS
Evaluate the following definite integrals:
`int_3^4 (d"x)/(x^2 - 4)`
Evaluate the following definite integrals:
`int_0^(pi/2) "e"^x((1 + sin x)/(1 + cos x))"d"x`
Evaluate the following definite integrals:
`int_0^1 (1 - x^2)/(1 + x^2)^2 "d"x`
Evaluate the following integrals using properties of integration:
`int_(-5)^5 x cos(("e"^x - 1)/("e"^x + 1)) "d"x`
Evaluate the following integrals using properties of integration:
`int_(- pi/2)^(pi/2) (x^5 + x cos x + tan^3 x + 1) "d"x`
Evaluate the following integrals using properties of integration:
`int_(- pi/4)^(pi/4) sin^2x "d"x`
Evaluate the following integrals using properties of integration:
`int_0^pi sin^4 x cos^3 x "d"x`
Evaluate the following integrals using properties of integration:
`int_0^1 |5x - 3| "d"x`
Evaluate the following integrals using properties of integration:
`int_0^1 (log(1 + x))/(1 + x^2) "d"x`
Evaluate the following integrals using properties of integration:
`int_0^pi(xsinx)/(1 + sinx) "'d"x`
Evaluate the following integrals using properties of integration:
`int_0^pi x[sin^2(sin x) cos^2 (cos x)] "d"x`
Choose the correct alternative:
For any value of n ∈ Z, `int_0^pi "e"^(cos^2x) cos^3[(2n+ 1)x] "d"x` is
Choose the correct alternative:
The value of `int_(-4)^4 [tan^-1 ((x^2)/(x^4 + 1)) + tan^-1 ((x^4 + 1)/x^2)] "d"x` is